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EXECUTIVE SUMMARY 

Throughout their life-time, humans are exposed to a mixture of environmental stressors and chemicals 

that independently or in interaction may have an impact on health. These mixtures can consist of an 

almost infinite number of different combinations of chemicals, which makes the exposure and risk 

assessment challenging. A detailed assessment of risks for all possible unintentional mixtures under 

REACH and other regulatory sectors would require a significant increase of information requirements, 

which would lead to huge additional costs for testing. A simplistic solution to address these 

complicated issues has been proposed in the form of a mixture assessment factor (MAF) under the 

REACH Regulation Annex I.  

By preference, the magnitude of the MAF should be supported by scientific data. In relation to the 

MAF discussion for human health, the use of human biomonitoring (HBM) data can be considered 

since this type of data forms a good reflection of real-life human exposure since HBM data reflect 

exposures from all routes and sources, and in nearly all HBM studies, exposure to multiple chemicals 

has been monitored.  

In this study, an overview of existing HBM datasets was made, and the relevance and potential use for 

human health mixtures risk assessment was assessed.  

- Description of existing HBM datasets 

 

The Horizon 2020 project ‘Human Biomonitoring for Europe – science and policy for a healthy future’ 

(HBM4EU; www.hbm4eu.eu) generated an extensive overview of biomonitoring datasets in the EU. 

There is a wealth of existing HBM datasets (>100) described in the EU, with potential relevance for 

mixtures in relation to human health risk assessment. For the majority of the studies (fulfilling criteria 

such as minimal sample size of 50) aggregated data are accessible via the HBM4EU dashboard 

(https://www.hbm4eu.eu/eu-hbm-dashboard/). These include summary statistics, such as the percentiles 

of the biomarker levels per data collection for 18 HBM4EU priority substances or substance groups 

(acrylamide, anilines, aprotic solvents, arsenic, bisphenols, cadmium, chromium, flame retardants, 

lead, mercury and its organic compounds, mycotoxins, per/polyfluorinated compounds (PFAS), 

pesticides, phthalates and DINCH, polycyclic aromatic hydrocarbons (PAHs) and UV filters 

(benzophenones)).  

On the one hand, it is recognized that the majority of HBM studies (18 chemical classes, covering 152 

biomarkers of exposure) cover only a small subset of the ‘real world mixtures’, in view of the 

thousands of chemicals produced by industry. On the other hand, these 18 substance groups should 

not be minimized too much, since the selection of these groups was a result of a thorough HBM4EU 

prioritization strategy, considering relevance for human health. Prioritization of chemicals under 

HBMEU is driven by members of the EU Policy Board and the National Hubs. More information on this 

prioritization process can be found on the HBM4EU website.1  

                                                           

1 https://www.hbm4eu.eu/wp-content/uploads/2017/03/HBM4EU_D4.3_Prioritisation_strategy_criteria-1.pdf  

http://www.hbm4eu.eu/
https://www.hbm4eu.eu/eu-hbm-dashboard/
https://www.hbm4eu.eu/wp-content/uploads/2017/03/HBM4EU_D4.3_Prioritisation_strategy_criteria-1.pdf
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Some of the chemicals included in the HBM campaigns pertain to legacy chemicals (e.g. 

hexabromocyclododecane ‘HBCDD’, Hexachloro-1,3-butadiene ‘HCBD’, PFOA and PFOS) or chemicals 

with restrictions (e.g.  DEHP, bisphenol A) and are therefore rather a reflection of past exposure, in 

combination with current exposure to substances present in materials with long lasting uses (e.g. 

furniture, construction products). The consideration of legacy chemicals in the MAF discussion should 

therefore be considered.    

Recent small pilot studies using suspect and non-target screening on human biomonitoring data also 

demonstrated that the ‘classical’ targeted screening (such as biomarkers belonging to the 18 HBM4U 

priority groups) does not capture a substantial number of industrial chemicals present in human body 

fluid, and thus the mixtures that are identified using target screening are very likely an underestimate 

of the real mixtures in human biofluids.  The field of suspect and non-target screening is an upcoming 

field, and once it will be enrolled in several HBM studies (as anticipated under the PARC initiative2), it 

can be very informative to inform on composition of mixtures in HBM samples  (Pourchet et al., 2020).  

The currently available HBM datasets in EU can be seen as a ‘patchwork’ of studies, from different 

regions, with each study having a particular scope and research question, and therefore different 

population groups (age/gender), periods and different sets of chemicals monitored. The HBM4EU 

project puts strong efforts in setting up aligned studies, which will enable in the future a better 

comparison of results across studies. The observation of diversity in HBM studies in several aspects 

should not hamper the use of individual datasets for mixture risk assessment; though comparison of 

risk estimates as outcomes of different studies should interpreted with caution, and accounting for 

the difference characteristics of the studies. 

Investigating mixture patterns on human biomonitoring datasets and performing mixtures risk 

assessment requires access to individual datapoints. Aggregated datasets are useful to perform single 

substance risk assessment. Aggregated datasets entail information for various single chemicals, 

however the aggregated level does allow insight in co-occurrence patterns or dependency of 

distributions patterns of single chemicals. Attempts have been made to use aggregated datasets to 

create mixtures scenarios, and related mixtures risk assessments (see further). However, the 

representativeness of such ‘constructed mixtures exposure scenarios’ in view of realistic mixtures is 

questionable. The ability to get access to (pseudonymized) individual HBM datasets is much more 

difficult compared to individual datasets from environmental monitoring campaigns, given the 

confidentially and privacy concerns of individual’s health data. Thus, information at the individual level 

is not publicly available for any human biomonitoring dataset.  Access to this type of data might be 

requested upon a motivated request submitted to the data owners/controllers of the datasets (the 

duration of the procedure and conditions to get access currently differ from study to study).  

Improvements of data sharing of individual records to perform mixtures risks assessment is essential 

to move forward with human biomonitoring mixture risk assessment (Bopp S, 2016).  

  

                                                           

2 PARC = Partnership for the Assessment of Risk from Chemicals (launched under the Horizon Europe Programme) 
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Despite the large number of humane biomonitoring (HBM) studies, the analysis of mixtures co-

occurrence patterns in HBM data, observational studies linking mixtures to health outcomes, and 

mixtures risks assessments, seem to be less covered in the scientific literature compared to single 

substance risk assessments and health associations. 

- Evidence on co-occurrence of chemicals in human biofluids 

o Co-occurrence in view of simultaneous presence/detection of chemicals in human 

biofluids  

 

Exploring the HBM4EU dashboard, we noticed that for a first group of chemicals (including several of 

the 18 HBM4EU priority chemicals or chemical groups), at least one exposure biomarker has been 

detected in urine or blood in nearly all available samples of general populations (i.e. measurements 

above LOQ/LOD in more than 95% of the investigated samples). This is the case for acrylamide, 

anilines, arsenic, bisphenol A, cadmium, chromium, lead, mercury, PFOS and PFOA, some pesticides 

(3-PBA; glyphosate), phthalates and PAHs. It should be remarked that not all these chemicals are 

systematically monitored in all datasets, but if monitored, it appears that they have a high detection 

frequency.  

There is a second group of chemicals which are present in a part of the population (e.g. DINCH, some 

organophosphate pesticides, several PFAS: present in > 50 % of samples if LOQ is sufficiently low), they 

were not detected in another part of the population. For a third, smaller set of chemicals, levels are 

only detected in a small proportion of the datasets (i.e. P90 or above > LOQ/LOD); e.g. this is the case 

for benzophenones (UV filters), some pyrethroids pesticides and some BDE’s. For the group of BDEs: 

there is a rather diverse pattern: BDE-153 is detected in most samples (P5 > LOQ) in some databases, 

while having a smaller detection rate in other databases. Other chemicals belonging to the BDEs are 

only detected in the minority of the samples of some datasets (e.g. BDE 183).  

The detection frequency cannot be fully compared across different studies, since LOQ and LODs might 

differ across studies (up to 20-fold or more), explaining partly why in some studies a higher proportion 

of the samples is < LOD/LOQ. Besides the difference in LOQ and LODs across datasets, also other 

factors play a role in detection frequencies across datasets; e.g. age of the study participants, sampling 

years, the region of the study and the specific population. For example, DINCH metabolites were only 

detected in 25 % of urine samples the ESB_2009 study in Germany in 2009; while keeping the same 

LOQ, DINCH metabolites became ubiquitous in the samples in the next decade (up to presence in > 

95%), likely due to the increased use of DINCH as a substitute for DEHP.  

In summary, in the majority of the human biofluids in HBM campaigns, a multitude of chemicals have 
been detected, thus providing evidence for simultaneous exposure to several chemicals. 

 
o Co-occurrence in view of magnitude of exposure (concentration levels) of chemicals 

in human biofluids  
 

For several HBM studies, co-occurrence patterns of chemicals in human biomonitoring datasets in 

terms of magnitude of exposure (concentration levels) have been reported. The co-occurrence 

patterns in these studies are based on a variety of statistical techniques including linear regression, 

heat maps, circular plots, principal component analysis (PCA) and network analysis.   
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Given the diversity of the studies (population group, sampling years and monitored chemicals) 

conclusions differed from study to study. Overarching over different studies, the following trends and 

observations were made: Mainly levels of chemicals belonging to the same chemical group tend to 

correlate. For example, samples with high levels for one PCB, have a likelihood to have also high level 

of other PCBs, and vice versa (this was demonstrated in several HBM Studies, Rosofsky et al. (2017); 

Govarts et al. (2020); Ottenbros; Agay-Shay et al. (2015);  Tamayo-Uria et al. (2019). 

Co-occurrence of magnitude levels between several PCBs can be explained by the presence of several 

PCBs in technical mixtures, thus PCBs having a common source. Likewise, levels within the groups of 

PBDEs, PFAS, phthalates, metals, phenols and pesticides tend to be correlated.   Co-occurrence of 

elevated levels across chemical classes is in general weak or not present unless for chemicals occurring 

in or originating from the same sources. For example: co-occurrence of elevated levels PCBs and Hg 

can be explained by fish as common source and co-occurrence of mono-ethyl phthalates and parabens 

was explained by personal care products as common source (Rosofsky et al., 2017).  

A lack of a co-occurrence patterns (mainly across chemical groups) based on levels should not be 

interpreted as that the presence of those chemicals is mutually exclusive. Rather, it indicates that 

chemicals with lack of co-occurrence patterns (levels) are “randomly” co-occurring. Let’s say if 

chemical A and B are both detected in the entire population, but they lack a co-occurrence patterns 

based on levels, it means that they both occur in every sample in the population, but the concentration 

levels of A and B are independent of each other. A lack of co-occurrence regarding levels in humans 

can also be regarded as substances having independent distributions.  

When performing human health risk assessment on datasets at individual level (cfr. recommended 

approach), there is no need to explicitly account for co-occurrence patterns, since this type of 

information is inherently present in databases. When one wants to perform mixtures risk assessment 

on aggregated data (not the recommended approach), the dependency of distributions should be 

considered, for chemicals with co-occurrence patterns based on levels.  

- Mixtures in relation to health effects (epidemiology)  

A limited literature search was performed regarding mixtures in human biomonitoring data in relation 

to health outcomes observed in epidemiological studies. The majority of these studies focus on 

perinatal exposure (exposure assessment in cord blood of newborns, breastmilk, urine, blood/serum 

of pregnant mothers) in relation to perinatal health outcomes (birth weight, placental weight, birth 

length, head circumference), and sometimes health outcomes in the follow-up study (e.g. BMI at 7 

years; early menarche of female offspring). These studies demonstrate the importance of considering 

mixtures exposures when assessing health outcomes in epidemiological studies:  statistically 

significant negative associations between of levels of chemicals mixtures in humans (assessed by 

biomonitoring) and the health of (vulnerable groups in) the general population have been reported, 

such as impact on birth indices (e.g. birth weight, length, head circumference).  Some associations 

were not observed with single chemical models, and associations were stronger when mixtures were 

considered compared to single chemical exposure. The observation that epidemiological studies 

reveals associations between mixture exposure and health outcomes, should further trigger human 

health regulatory risk assessment to also consider mixtures.    
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At the same time, it’s important to realize that the current epidemiological knowledge on mixtures 

in relation to health effects is mainly focused on a specific, vulnerable subpopulation (newborns), 

considering generic health outcomes and a limited list of chemicals (including legacy chemicals, and 

chemicals under restrictions). Epidemiological studies considering effects of mixtures in other 

vulnerable populations and life stages (e.g. puberty, elderly) and other, more specific categories of 

health effects (e.g. effects of mixtures on neurodevelopmental effects, cardiovascular effects, 

respiratory system, immunological effects, etc.) remain to be investigated. Additionally, the 

associations between health outcomes and mixtures pertain often to legacy chemicals, which have 

been used in the past, but are currently no longer used or limited in current applications (e.g. POPS 

under Stockholm Convention, chemicals under Restriction or Authorization). In view of the discussion 

of MAF for REACH chemicals, it would be very useful to have this type of analysis performed also on 

mixtures of non-legacy chemicals. 

- Mixture Risk Assessments using HBM datasets  

Whereas epidemiological studies demonstrate that human exposure to mixtures reveals a better 

model to explain health effects in the general population compared to single chemical exposure, the 

statistical models described in these studies cannot be used in regulatory risk assessment concepts 

such as RCRs under REACH. Instead, a practical instrument to perform mixtures risk assessment is the 

Hazard Index (HI) approach, in combination with maximum cumulative ratio (MCR). The HI of a 

sample (biofluid sample) is the sum of hazard quotients (HQ) of several chemicals present in the 

biofluid. In its turn, the HQ is the ratio of the concentration (exposure level) to the health-based 

guidance value per substance. The MCR is the ratio of the HI of the mixture to the maximum of the 

HQs of the individual components, and thus represents whether the risk is mainly driven by one 

substance (MCR =1), a few substances (MCR: 2-3), or caused by a lot of substances all contributing a 

little bit to the risk  (MCR → n ; with n = number of substances present in the mixture). The HI and 

MCR approaches are based on the hypothesis of dose addition, which is considered a conservative 

assumption for evaluating mixture effects, especially when applied in a low tier approach without 

considering communalities in endpoints or mode of action, and thus including all substances in the HI 

summation. The MCR and HI approach can also be used in a higher tier approach, where the 

summation of HI considers only chemicals affecting the same health effect or according the same 

mode of action.  

In several publications, the HI and MCR concept have been applied in human biomonitoring data. 

Nearly all studies calculated HI and MCR on individual datapoints in datasets and relied on reverse 

dosimetry of HBM data (urinary levels) to external exposure estimates, which are used in HI 

calculations, in combination with health-based guidance values for external exposure for single 

chemicals. Nearly all publications deal with mixture risk assessment covering risk of substances within 

a chemical group; hardly any of the publications calculated risks across chemical groups.  

The majority of the HBM HI/MCR studies within chemical groups pertain to mixture risk assessment 

for phthalates, with a focus on risk for reproductive and developmental toxicity by anti-androgenic 

modes of action, since this is the critical and common health effect of several phthalates.   
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To varying degrees, these studies revealed exceedances both of acceptable single and combined 

phthalate exposures, and in general the HI was dominated by one or two phthalates (dominance of 

DBP and DEHP in the HI). However, the outcomes of these various phthalate mixture risk assessments 

are difficult to compare because of three reasons. Firstly, different phthalates and numbers of 

phthalates were investigated in the different studies. Secondly, the studies used often different 

health-based guidance values (EFSA 2005 TDIs for phthalates versus RfD for phthalates derived by 

Kortenkamp & Faust (2010) and Kortenkamp & Koch (2020)). This factor might lead to a 5-fold 

difference in HI values, if all other factors are kept constant. Thirdly, there is also evidence that 

phthalate exposures have undergone changes over the years. Apel et al. (2020) performed HI and MCR 

calculations for each participant from the German Environmental Specimen Bank, which is a 27-year 

survey of urinary phthalate metabolite levels in 24-hour urine samples. While Apel et al. (2020) 

reported strong (about 10-fold) declining HI’s over this period, ascribed to decreasing exposure levels, 

they reported at the same time that the more recent HIs were driven by a greater number of 

phthalates.  

Additionally, studies on application of HI and MCR concept on human biomonitoring data were found 

for parabens (Moos et al., 2017), dioxins, furans and PCBs (Han and Price, 2013), pesticides (F. 

Fernández et al., 2020; Katsikantami et al., 2019) and PFAS (Borg et al., 2013). Also, for these chemical 

groups, one or a few compounds dominated in general the HI (i.e. n-PrP was the dominant substance 

in the HI for parabens; for PCBs: the MCR ranged from 2 to 5; for pesticides: dominance of dimethoate 

in the organophosphate group; dominance of PFOS and PFOA for respectively  the HI hepatoxicity and 

reproductive effects). However, since PFOA and PFOS are phasing out, the use of other PFAS 

substances is increasing, which is visible in more recent HBM studies. Therefore, the pattern of 

dominance of PFOS and PFOA in the mixture toxicity is likely to decrease, and other PFAS might play 

a dominant role in the HI in the future. 

A few studies have looked at the HI across different chemical groups. For example, the human health 

mixture risk assessment of A. Kortenkamp & Faust (2010) included exposures to a combination of 15 

chemicals from several groups: phthalates (DBP, BiBP, BBP, DiNP, DEHP), pesticides (vinclozolin, 

prochloraz, procymidone, linuron, fenitrothion, pp’DDE), a flame retardant (BDE-99), bisphenol A, and 

parabens (butyl paraben and propyl paraben), all being substances capable of producing reproductive 

and developmental toxicity by anti-androgenic modes of action. Based on their data, we estimated 

MCR values of 2.0 and 3.2 for the median and high intake scenario, respectively.  On the one hand, 

this study had an important shortcoming in the sense that the exposure assessment is based on 

aggregated data from a variety of sources, and not on individual data. On the other hand, the concept 

of applying HI and MCR calculations on substances across chemical groups considering common health 

effects, is interesting. It would be useful to apply their concept of across chemicals groups mixtures 

risk assessment on individual exposure data records instead of aggregated data.  

Several authors point to consider mixtures risk across chemical groups (Borg et al., 2013; Kortenkamp, 

2020) in order not to miss part of the mixture toxicity. However, a ‘blind’ summing of HQs is not 

recommended for mixture risk assessment on HBM data. To proceed, further developments should 

be made in view of gathering detailed toxicological information for grouping, point of departure values 

for relevant endpoints, and adverse outcome pathways, and derivation of endpoint specific guidance 

values.   
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A discussion of the selection of the health-based guidance values as denominator in the HQ could also 

be welcome, since this can affect strongly the HI values. This was noted when using Reference Doses 

(RfD’s) from EFSA for phthalates versus guidance values derived by Kortenkamp et al. 2010 and 2020. 

For many chemicals, the choice of the health-based reference values is likely to have a strong impact 

on the mixture risk. This discussion should also consider the role of human biomonitoring guidance 

values (HBM-GV) as denominator in the HI.  Using HBM-GV would allow a straightforward use of HBM 

exposure levels (in urine, blood), instead of back-calculated external exposure using reverse dosimetry 

or empirical factors. The latter introduce uncertainty in the exposure assessment.  

In the majority of the investigated studies, a few compounds drive the toxicity (MCRs typically 2-3). 

However, two important considerations should be made: this conclusion is often based on results 

from within group chemicals mixtures risk assessment, with a limited number of substances 

considered (e.g.; phthalates: often only 4-6 compounds considered). It should be further investigated 

whether this dominance of a few compounds is still valid when considering across chemical groups 

risk assessment (thus including substantially more chemicals) and considering time trends where 

substitution towards more compounds (e.g. PFAS and phthalates) is likely to occur.  

As final reflection: mixture risk assessments rely on the assumption of the dose additivity concept and 

does not capture for other types of interactions (e.g.; synergistic effects). For a practical point of view, 

it is not feasible to consider other types of interactions in regulatory mixture RA approaches; however, 

one should realize that dose additivity might underestimate the risk. 
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 INTRODUCTION – APPROACH 

Throughout the life-time, humans are exposed to a mixture of environmental stressors and chemicals 

that independently or in interaction may have an impact on health. These mixtures of exposure can 

form an almost infinite number of different combinations of chemicals, which makes the exposure 

and risk assessment challenging. Until recently, chemical risk assessment was mainly focused towards 

single substances. However, a substance by substance approach cannot capture the complexity of 

simultaneous exposure to multiple chemicals in real life.  Also, at the policy and regulatory level, there 

are strong incentives to cover and manage risks related to mixtures. As an important aspect, the EU 

chemical strategy for sustainability towards a toxic-free environment foresees the introduction of 

mixture assessment factor (MAF), to be adopted under the REACH Regulation Annex I (EC, 2020). A 

detailed assessment of risks for all possible unintentional mixtures under REACH and other regulatory 

sectors would require a significant increase of information requirements, which would lead to huge 

additional costs for testing. A simplistic solution to address these complicated issues has been 

proposed in the form of a mixture assessment factor (MAF) under the REACH Regulation Annex I,  and 

is likely to be applicable to other regulatory areas as well (EC, 2020). During MAF workshops in 2016 

and 2020, the magnitude of the MAF and the feasibility of a generic MAF for human health and the 

environment (versus a specific ‘human’ MAF and ‘environmental’ MAF) was intensively debated and 

it was recognized that MAF is not underpinned with scientific evidence. It was left open whether and 

for which substance groups the MAF should be applied.   

Scientific underpinning of an appropriate MAF value for human health can be seen as the target on 

the horizon. Mapping of the existing evidence on the (risks) related to human exposure to mixtures 

can be seen a first step in this process. In this study, we aim to give an overview of existing datasets 

on human biomonitoring data in EU, and its potential and shortcomings to use human biomonitoring 

data to better understand real life exposure to mixtures for humans. Subsequently, the use of human 

biomonitoring data to scientifically address mixtures risks will be discussed.    

The report is structured reflecting this approach:  

CHAPTER 2: Overview of existing human biomonitoring datasets in EU  

CHAPTER 3: Co-occurrence patterns in human biomonitoring datasets  

CHAPTER 4: Exposure to mixtures in relation to health effects 

CHAPTER 5: The use of HBM data in human health Mixture risk assessment 

CHAPTER 6: Conclusions and recommendations 
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 OVERVIEW OF HUMAN BIOMONITORING DATASETS 

Human biomonitoring (HBM) data, when conducted appropriately, are considered as the best 

reflection of real-life human exposure since HBM data resonate exposures from all routes and sources. 

HBM data provide an integrated picture of the totality of chemicals a person has been exposed to 

simultaneously. Other proxies (e.g. indoor dust samples; dietary exposure, …) can be considered as 

additional but are more indirect and partial reflections of exposure, and use of such exposure-source 

oriented datasets require assumption of the likelihood of co-exposure to distinct sources. 

The ongoing Horizon 2020 project ‘Human Biomonitoring for Europe – science and policy for a healthy 

future (HBM4EU; www.hbm4eu.eu) generated an extensive overview of biomonitoring datasets 

throughout its 30 participating countries, including mainly EU countries. 

In this chapter, a summary of the nature of the existing datasets, the level of access and its 

characteristics (in term of number of chemicals, participants, age, matrices, …) is briefly described. 

Given the multitude of datasets, it is out of scope to provide details for each dataset individually.  

For more details, it is recommended to consult 1) the IPCHEM platform 

(https://ipchem.jrc.ec.europa.eu/), and 2) the EU HBM dashboard (https://www.hbm4eu.eu/eu-hbm-

dashboard/). The human biomonitoring module of the IPCHEM platform hosts meta-information 

regarding following aspects of the datasets:  

- General information: study year, region, coverage, monitoring season, number of individuals 

in the human biomonitoring study;  

- Study population: age, gender, socio-economic status, lifestyle parameters, environmental 

exposure factors;  

- Data access & responsibilities; 

- Sampling and analytical information (matrices, compounds, detection limits, ...).  

- Also aggregated HBM data are being integrated in IPCHEM. The aggregated HBM collected 

within HBM4EU are visualized by the EU HBM dashboard. 

2.1. OVERVIEW OF EXISTING DATASETS  

The human biomonitoring module of IPCHEM entails 128 human biomonitoring studies with data 

collections starting from 1981 (earliest study) to 2018 (most recent study), covering mainly general 

populations studies, a few occupational studies and a few clinical populations. Whereas in the US, the 

national NHANES biomonitoring programme is an US wide programme, with protocols regarding 

participants selection, chemicals monitored, age groups, analytical techniques ensuring the 

comparability of data over time and regions, the existing datasets in EU are rather a ‘patchwork’ of 

studies, from different regions, with each study having a particular scope and research question, and 

therefore different population groups (age/gender), periods and different sets of chemicals monitored 

and possibly different analytical methods and limits of quantification.   

http://www.hbm4eu.eu/
https://ipchem.jrc.ec.europa.eu/
https://www.hbm4eu.eu/eu-hbm-dashboard/
https://www.hbm4eu.eu/eu-hbm-dashboard/
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The HBM4EU project puts strong efforts in setting up aligned studies, which will enable in the future 

a better comparison of results across studies.   

There is a large variety in completed and ongoing human biomonitoring studies in the EU with respect 

to:  

Study sizes:  

- From small studies (e.g. Danish firefighter study investigating PAHs exposures, ‘BIOBRAND’; 

(Andersen et al., 2018) ; n = 22) 

- Medium size studies (majority of studies) (n = 200-2000). e.g. Flemish studies (FLEHS) 

(Ottenbros et al., 2021; Schoeters et al., 2017), INMA studies (Robinson et al., 2015) 

- Large cohorts (minority of the studies) (e.g. NIPH MoBa – HBM within the Norwegian Mother 

and Child cohort; n = 114.000; (Magnus et al., 2016) 

 

Number and types of chemicals measured in human biomonitoring studies:  

- A few chemicals, or specific group of compounds targeted to a specific research question, e.g.;  

o Focus on PAH exposure in the Danish firefighter study BIOBRAND  

o Focus on polybrominated diphenyl ethers (PBDE) in the EXBROM study in Denmark; 

studying the exposure of pregnant women and their un- and newborn children to 

polybrominated diphenyl ethers (Frederiksen et al., 2009) 

o Focus on perfluoroalkyl compounds in the PFCHUM study in Spain (Pérez et al., 2013) 

o etc.  

- Studies covering a wide range of chemical classes, e.g.;  

o The German Environmental Survey (GerES) and the German Environmental Specimen 

Bank studies; representative population studies carried out in order to determine the 

exposure to pollutants of the general population in Germany. Covering the following 

groups: phthalates, DINCH, PFAS, bisphenols, PAHs, heavy metals, acrylamide, pesticides, 

aprotic solvents, UV filters and flame retardants  

o The French ELFE study (perinatal study) (Béranger et al., 2020); covering the following 

groups: phthalates, DINCH, PFAS, bisphenols, flame retardants, heavy metals,  pesticides, 

PCBS, dioxins, furans,  

o The Flemish Environment and Health Studies (FLEHS): covering metals, dioxins, furans, 

pesticides, PCBs, PAHS, phthalates, bisphenols, PFAS, flame retardants (Govarts et al., 

2020) 

These are a few examples illustrating the variety in number of chemicals assessed in human 

biomonitoring studies in the EU. For chemicals monitored in other cohorts, we refer to the IPCHEM 

platform.   
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2.2. ACCESS TO HBM DATASETS 

Granularity of human biomonitoring datasets can be distinguished at three levels: 

- Meta-information level, including study year, region, coverage, monitoring season, number 

of individuals in the human biomonitoring study, study population: age, gender, socio-

economic status, lifestyle parameters, environmental exposure factors, data access & 

responsibilities, sampling and analytical information (matrices, compounds, detection limits, 

...).  

- Aggregated data level:  summary statistics, such as the percentiles of the biomarker levels per 

data collection (P05, P10, P25, P50, P75, P90, P95), limit of detection (LOD) / limit of 

quantitation (LOQ) information. Summary statistics might also include summary statistics 

stratified by population subgroups (by gender, age, educational level, etc.).   

- Individual record level: information on exposure and possibly (if taken along) health-related 

parameters like birth weight for each individual participant in the dataset. This type of 

information is not publicly available for most of the human biomonitoring datasets. Access to 

this type of datasets as well as research use is strictly controlled and has to be compliant with 

the GDPR in case of pseudonymized individual data.  Access to this type of data might be 

requested upon a motivated research request submitted to the data owner (contact details 

for each dataset can be found in the IPCHEM platform). Request to get access follows in 

general a strict procedure (the duration of the procedure and the condition for use are to be 

investigated for each dataset separately).   

Investigating mixture patterns on human biomonitoring datasets and performing mixtures risk 

assessment requires access to individual datapoints. Aggregated datasets are useful to perform single 

substance risk assessment, however, for mixtures risk assessment individual datapoints are needed. 

Use of e.g. P95 values for all individual constituents (chemical substances) will provide an 

overestimation of the mixture exposure in the cohort. Contrary, use of only P05 or P50 values will lead 

to an underestimation. One individual may be highly exposed to one chemical but average or low 

exposed to the other, vice versa.  

Improvements of data sharing of individual records to perform mixtures risks assessment is essential 

to move forward with human biomonitoring mixture risk assessment (Bopp S, 2016).  

Since it was not possible within the timeframe of this project to request access and use to individual 

datasets to perform mixtures analysis on HBM datasets, the analysis of co-occurrence patterns and 

mixture risk assessment based on human biomonitoring studies is based on previous investigations 

available in literature (see chapters 3, 4 and 5).  
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2.3. CHEMICALS AND LEVELS IN HBM DATASETS  

2.3.1. CHEMICALS  

→ Target screening  

The EU HBM dashboard (www.hbm4eu.eu/eu-hbm-dashboard/) allows to visualize summary statistics 

from existing HBM data collections obtained through the HBM4EU project. The data included in the 

dashboard were obtained in a standardized and comparable way. The dashboard visualizes the 

percentiles of the biomarker levels per data collection (P05, P10, P25, P50, P75, P90, P95) and also 

displays limit of detection (LOD) / limit of quantitation (LOQ) information. Moreover, there is a filter 

function to view biomarker data for specific subgroups such as by sex, age, educational level, etc. The 

current data is limited to the 18 HBM4EU priority substance groups, i.e. acrylamide, aniline, aprotic 

solvents, arsenic, bisphenols, cadmium, chromium, DINCH, flame retardants, lead, mercury ant its 

organic compounds, mycotoxins, per/polyfluorinated compounds (PFAS), pesticides, phthalates, 

polycyclic aromatic hydrocarbons (PAHs) and UV filters (benzophenones). These 18 substance groups 

also cover the vast majority of substances monitored in HBM campaigns in EU. Other compounds 

(outside 18 substance groups) are also measured in some studies (e.g. PCBS, other metals, ...). 

however, a comprehensive overview is not available in IPCHEM or the HBM4EU dashboard. 

A first point of attention is the relation between parent compounds (chemicals as produced, and/or 

as present in the environment) and the biomarker present in the human samples. Most chemicals 

(parent compounds), once entered in the human body, are distributed by blood route to several 

tissues and undergo metabolisation in the liver. Consequently, most chemicals end up as metabolites 

in urine or faeces. Metabolites in urine are so called ‘biomarker’ of exposure. As an example: pyrene 

metabolism in humans starts with hydroxylation of pyrene to 1-hydroxypyrene (1-OH pyrene) by 

cytochrome P450 iso-enzymes. In the second step, 1-OH pyrene is conjugated and is excreted in urine 

as a glucuronide-conjugate. Hence, for exposure to pyrene, 2 biomarkers in urine (1-OH pyr and gluc) 

are relevant. This is an example of simple, unbranched metabolisation pathway. For several chemicals, 

metabolisation might result to several metabolites (branched or unbranched metabolisation 

pathways), thus several biomarkers of exposure are relevant. Additionally, metabolites might in some 

case originate from more than one parent compound. For example, cis-DDCA is a metabolite of both 

permethrin and cypermethrin. As a result, such biomarkers cannot be linked univocal to one parent 

compound. This difficulty of use of biomarkers for use of mixtures risk assessment of parent 

compound is mentioned by several authors (e.g. (F. Fernández et al., 2020) 

Appendix 1 provides a mapping of parent compounds and metabolites for the chemicals belonging to 

the 18 HBMEU priority chemicals. Whenever possible, the main parent compound is mentioned in the 

table. In cases where biomarkers originate from several parent compounds, the group names for the 

parent compounds are displayed.   

http://www.hbm4eu.eu/eu-hbm-dashboard/
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→ Suspect and non-target screening  

The target screening approach for generation HBM data on some specific chemicals has delivered only 

data on a relatively limited number of substances. Two alternative approaches under development 

are suspect screening and non-targeted screening. Where target screening uses reference standards, 

suspect screening uses only attributes such as mass and isotope patterns but no reference standards 

and non-targeted screening uses no pre-existing knowledge. Until recently, the majority of human 

biomonitoring studies investigated levels of priority chemicals using targeted analysis (cfr. previous 

section). The use of non-targeted analysis (suspect screening and non-target screening) has only been 

used in the field of human biomonitoring analysis during the last couple of years. ”Suspects” are 

known compounds (“known unknowns”) in terms of chemical name and structure which are expected 

(“suspected”) to be present in a sample. The typical approach applied in this case is largescale suspect 

screening aiming to generate semi-quantitative data and contribute to better prioritization for further 

targeted developments (Cortéjade et al., 2016).  Non-targeted screening aims to detect “unknown 

unknowns” compounds without any a priori criteria, to identify potential new markers of exposure 

and toxicological concern. Generally, sample preparation and data acquisition are similar for suspect 

and non-targeted screening whereas data analysis/mining are different. Although highly challenging, 

this approach represents the most promising strategy to advance our knowledge of the human 

chemical exposome (Pourchet et al., 2020). 

The techniques of suspect screening and non-target screening are of particular interest for the so- 

called ‘chemicals of emerging concern’ (CEC). CECs encompass both new compounds recently 

detected in the environment-food-human continuum (for instance, newly developed substitutes of 

banned and/or regulated chemicals) and compounds with known presence, yet for which concerns 

have recently increased (e.g. due to progress of analytical performances, newly identified sources, 

uses and/ or routes of exposure, particularly exposed sub-population, toxicological evidence, 

evolution of regulatory dispositions…) (Sauvé and Desrosiers, 2014).  

Pourchet et al. (2020) and Wang et al. (2021) noticed that monitoring of CECs through the use of 

suspect and non-target screening is well established in the field of monitoring in environmental 

matrices, and becomes also more prominent in the chemical food safety area. According to Pourchet 

et al. (2020), CECs remain less investigated, via suspect or non-targeted screening approaches, in the 

field of human biomonitoring, except for particular applications focused on specific classes of 

compound, such as pesticides. One component of HBM4EU project aims at the development and 

implementation of large-scale suspect and non-targeted screening methods dedicated to the 

detection of markers of internal chemical exposure for HBM, environmental health studies and 

support to risk assessment purposes. While the number of publications on suspect and non-target 

screening in HBM samples is growing, the majority is currently mainly reporting on the development, 

validation and pilot demonstration of few samples (e.g. Baduel et al., 2015) ). The use of suspect and 

non-target screening on large number of samples (e.g. full analysis on cohort samples) has not yet 

been reported.  HBM4EU produced a nice leaflet to provide ins and outs as well as future opportunities 

for SS and NTS (HBM4EU Factsheet NTS and SS) as well as several publicly available deliverables 

(D16.1, D16.2, AD16.1, AD16.2, AD16.3, AD16.4) available at www.hbm4eu.eu.  

  

https://www.hbm4eu.eu/wp-content/uploads/2019/04/HBM4EU_Indicator_8.1_emerging_chemicals_screening_September2020.pdf
http://www.hbm4eu.eu/
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While the development and implementation of large-scale suspect and non-targeted screening 

methods for human biomonitoring in Europe is progressing and is expected to advance a lot to our 

understanding of human exposure to mixtures in the coming years, the currently available results are 

too few and scattered and are not yet included in the existing HBM exposure databases. Few 

publications regarding results of suspect and non-targeted screening application on HBM samples 

have been published yet. Although the number of applications is increasing in this field, some 

authors suggest that more efforts are needed to harmonize integral SNTS methodologies used in 

biomonitoring studies to assess the organism exposure to chemicals (Gonzálezgonz´gonzález-Gaya et 

al., 2021). However, a few (mainly US) publications on the applications of suspect and non-targeted 

screening give some first insights:   

- Tran et al. (2020) performed non-targeted analysis (using GC x GC/TOF-MS) on human breast milk 

samples from three mothers (2011). A total of 172 presumably anthropogenic halogenated 

compounds and non-halogenated cyclic and aromatic compounds were tentatively identified in the 

breast milk samples through mass spectral database searches. Forty of the compounds were 

prioritized for confirmation based on halogenation or 100% frequency of detection. 34 (85%) of the 

prioritized contaminants are not typically monitored using target screening in breast milk surveys, and 

31 (77%) are regulated in at least one market worldwide. 

 

- Wang et al. (2021) applied liquid chromatography−quadrupole time-of-flight tandem mass 

spectrometry (LC-QTOF/MS) to perform suspect screening for ∼3500 industrial chemicals on pilot data 

from 30 paired matern and cord serum samples (n = 60). They identified 557 unique compounds, and 

identified tentatively 55 compounds not previously reported in the literature. Some of these new 

identified substances in cord blood or serum are PFAS, plasticizers, substances in cosmetics and 

consumer products or high production volume chemicals. However, for the majority (i.e. 42) of these 

compounds, information regarding the sources and uses was not available (therefore, these 

compounds could not be classified under the categories of pharmaceuticals, pesticides, flame 

retardants, PFAS, plasticizers, cosmetics, consumer products, hugh production volume chemicals 

classified in EPA’s Chemical Dashboard.  

- Gerona et al. (2018) used LC-QTOF/MS for discovery of previously unmeasured environmental 

chemicals in human serum. They focused on organic compounds with at least one dissociable proton 

which are utilized in commerce (Environmental organic acids ‘EOA’). EOAs include environmental 

phenols, phthalate metabolites, perfluorinated compounds (PFCs), phenolic metabolites of 

polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and acidic pesticides 

and/or predicted acidic pesticide metabolites. These authors first identified 282 ‘suspect’ EOAs, and 

65 of these suspect EOAs were detected in at least 75 % of the 20 serum samples (pregnant women). 

Only 19 of these compounds are currently biomonitored in NHANES.  Again, This indicates that target 

screening might miss a substantional number of chemicals in a substantion proportion of samples.  

 

- Miaz et al. (2020) analyses PFAS in pooled serum samples from 1996-2017 from first time mothers 

living in Uppsala (Sweden). The authors detected a decrease in levels of target PFAS over time and 

reported an increase to novel PFAS which had not yet been identified before. Using suspect and non-

target screening, (Miaz et al., 2020) revealed respectively the presence of perfluoro-

ethylcyclohexanesulfonate (PFECHS) and 3 PFAS compound with unidentified features (neutral masses 

422.2307, 396.2066, and 436.3554).  
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The above mentioned studies should also be regarded as complementary to each other in terms of 

matrix (breast milk vs. serum and cord blood) and analytical techniques. Wang et al. (2021) used LC-

QTOF/MS, primarly focussing on polar and involatile chemicals, Tran et al. (2020) used GC /TOF-MS, 

capturing nonpolar and (semi)volatile chemicals, Gerona et al. (2018) focused on Environmental 

organic acids and Miaz et al. (2020) performed suspect and non-target screening of fluorinated 

compounds. 

These studies illustrate that ‘classical’ target screening of chemicals in HBM is likely to result in only a 

fragmented picture of the entire mixture that can be present in human matrices. Once the evidence 

on the application of suspect and non-targeted screening is growing, it can be a very useful source of 

data to investigate co-occurrence patterns and to perform mixtures risk assessment, as this approach 

will expand the number of chemicals that may be found in mixtures substantially. 

2.3.2. LEVELS OF CHEMICALS  

This section is limited to results from target screening monitoring. Firstly, because levels of suspect 
screening and non-target screening in general do not report levels in a quantitative way. Secondly, 
because the use of screening and non-target screening is currently at the stage of method 
development, and demonstration in a pilot case, but it is not yet enrolled as new techniques in 
completed and ongoing large scale HBM campaigns.  

The levels of chemicals measured using target analysis can be easily displayed and extracted from the 
European HBM dashboard at an aggregated level. An example, using a screenshot of the 
HBMdasboard, is  given here below for the Belgian phthalates dataset (levels of metabolites in urine):  
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The interactive dashboard available at https://www.hbm4eu.eu/eu-hbm-dashboard/  provides 
popping-up of infoboxes to show more details (e. LOQ, LOD, value of percentiles, number of 
datasets,…) when moving the cursor over the boxplots.  

The boxplots on levels in urine of the FLEHS adolescents indicate that the majority of the phthalates 
biomarkers (e.g. MEHP, MEP, MiPB, MnPB, 5OH-MEHP, 5 oxo-MEHP, MBzP) are present in nearly the 
entire cohort. This is derived from the observation that the lower end of the displayed distribution 
(e.g. 5th percentile: second left dot outside the bars of ‘boxplots’) is above LOQ or LOD.    

For a detailed description of levels of chemicals in human biomonitoring datasets, we refer to the 
https://www.hbm4eu.eu/eu-hbm-dashboard/. This dashboard provides a complete picture. We 
prefer to refer to this dashboard, rather than duplicating the tables and figures in this report.  

A screening of the aggregated datasets reported in https://www.hbm4eu.eu/eu-hbm-dashboard/ 
indicated the following trends in detection frequency in relation to the LOQ/LOD (see Appendix 2) :  

- For the majority of the chemicals reported in the HBM4EU aggregated dashboard, at least one 

biomarker of exposure  can be detected in urine or blood in nearly the entire distribution of the 

available datasets (i.e. present above LOQ/LOD in  more than 95% of the investigated samples): this is 

the case for acrylamide, anilines, arsenic, bisphenol A, cadmium, chromium, lead, mercury, PFOS and 

PFOA, some pesticides (3-PBA; glyphosate, phthalates and PAHs; 

- Some chemicals are present in a substantial subset of the data sets, but not in the vast majority of the 

population (e.g. DINCH, some organophosphate pesticides, several PFAS); 

- For a smaller set of chemicals, levels are only detected in small proportion of the datasets (i.e. only 

P90 or above > LOQ/LOD); e.g. this is the case for benzophenones (UV filters) some pyrethroids 

pesticides, and some BDEs; 

- For the group of BDEs: there is a rather diverse pattern: BDE-153 is detected in the majority of samples 

(P5 > LOQ) in some databases, while having a smaller detection rate in other databases. Other 

chemicals belonging to the BDEs are only detected in the minority of the of samples of some datasets 

(e.g. BDE 183);  

- The detection frequency cannot be fully compared across different studies, since LOQ and LODs might 

differ across studies (up to 20-fold or more); explaining partly why in some studies a higher proportion 

of the samples is < LOD/LOQ; 

- Besides the difference in LOQ and LODs across datasets, also other factors play a role in detection 

frequencies across datasets; e.g. sampling years, the region of the study and the specific population. 

For example, regarding the age of the study: DINCH metabolites was only detected in 25 % of urine 

samples the ESB_2009 study in Germany in 2009; while keeping the same LOQ, DINCH metabolites 

became ubiquitous in the samples in the next decade (up to presence in > 95%), likely due to the 

increased use of DINCH as a substitute for DEHP. 

2.3.3. TIME WINDOWS  

Majority of the human biomonitoring studies report data of spot samples (urine, blood) or 24h 

samples (urine). The levels of chemical present in these matrices might represent short term or long-

term exposure, depending on the type of matrices and half-lives of the chemicals in the human body. 

For example, cadmium in blood  is a reflection of recent exposure, while Cd levels in urine reflect a 

https://www.hbm4eu.eu/eu-hbm-dashboard/
https://www.hbm4eu.eu/eu-hbm-dashboard/
https://www.hbm4eu.eu/eu-hbm-dashboard/
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longer history of exposure (Adams and Newcomb, 2014). However, this example for Cd is not a rule 

of thumb, it is recommended to retrieve information on half-life information case by case.  

2.4. IMPRESSION REGARDING THE USE OF EXISTING HBM DATASETS TO ASSESS HUMAN EXPOSURE TO MIXTURES  

→ Number and type of chemicals 

Industry synthesizes an estimated 130.000 different chemicals (22.000 registered substances are 

covered by REACH alone). These are all potentially present in our environment, where they can 

combine in a nearly endless number of potential unintentional mixtures. Chemicals measured in 

HBM4EU human biomonitoring studies (based on targeted analysis) cover 18 substance groups, and 

152 biomarkers of exposure.  These numbers show that it’s clear that only a small subset of the ‘real 

world mixtures’ are covered in HBM. The number of chemicals that will become included in  upcoming 

HBM studies will only increase in the future (e.g. the use of non-target monitoring techniques is a 

promising field; (Pourchet et al., 2020). Chemicals included in current HBM datasets should indeed be 

considered as a rather small fraction of all chemicals. On the other hand, these 18 substance groups 

should not be minimized too much, since the selection of these groups was a result of a thorough 

HBM4EU prioritization strategy, including consideration of relevance for health and likelihood of 

sufficient detection frequency. Prioritization of chemicals under HBMEU is driven by members of the 

EU Policy Board and the National Hubs. More information on this prioritization process can be found 

on the HBM4EU website.3  

The substances included in the HBM4EU human biomonitoring datasets thus include both legacy and 

non-legacy chemicals. PFOA, PFOS and several BDEs are present in the Annex of the Stockholm 

Convention. The use of DEHP, bisphenol A, several pesticides and metals (Cd,Cr) is subject to 

authorization or restriction under REACH. Other human biomonitoring substances (several PFAS; 

phthalates) are currently still produced and used in large quantities in the EU.  

→ Comparability of datasets  

The nature of the existing EU HBM datasets is rather diverse in terms of age of the study, region, 

number of subjects, chemicals analyzed, LOD/LOQ, selection and representativeness of individuals 

(general population, or subgroup). Therefore, it is recommended to perform mixture co-occurrence 

patterns and mixtures risk assessment study-by-study. Pooling datasets to come to a comparable 

dataset is an option, however quite demanding. The design of aligned studies (common protocols for 

new studies set up under HBM4EU) will smooth the path to combine existing datasets.  

→ Access to data / implications for the assessment of mixtures  

Investigating mixture patterns on human biomonitoring datasets and performing mixtures risk 

assessment, requires access to individual datapoints.  Getting access to individual datasets for human 

                                                           

3 https://www.hbm4eu.eu/wp-content/uploads/2017/03/HBM4EU_D4.3_Prioritisation_strategy_criteria-1.pdf  

https://www.hbm4eu.eu/wp-content/uploads/2017/03/HBM4EU_D4.3_Prioritisation_strategy_criteria-1.pdf
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biomonitoring data is however not straightforward. Since it was not possible within the timeframe of 

this project to request access to individual datasets to perform mixtures analysis on HBM dataset, the 

analysis of co-occurrence patterns and mixture risk assessment in human biomonitoring studies is 

based on previous investigations available in literature (see chapters 3 and 4).  

Notwithstanding that using aggregate data has its limitation for mixtures risk assessment, the 

distributions for individual levels give us the following insights. First, since for a large part of the 

HBM4EU priority chemicals, at least one biomarker of exposure is detected in > 95 % of the samples 

of human biomonitoring studies, it is obvious that there is co-occurrence of several chemicals in 

human species (‘real world mixtures’). At least the following set of chemicals is expected to occur as 

mixtures in a large part of the general population: acrylamide, anilines, arsenic, bisphenol A, cadmium, 

chromium, lead, mercury, PFOS and PFOA, some pesticides (3-PBA; glyphosate); phthalates, PAHs. 

Thus, co-occurrence of chemicals across chemical groups is likely to occur. Second, the correlation 

between the levels of the detected substances in human biomonitoring cannot be derived from the 

aggregated data. Hereto, access to individual datasets is required. It is recommended to use individual 

level datasets, similar to the calculation of hazard indices, in the investigation of chemicals dominating 

the mixtures. 

 



CHAPTER 3 - Co-occurrence patterns 

 

12 

 CO-OCCURRENCE PATTERNS 

3.1. APPROACH  

Investigating co-occurrence patterns in human biomonitoring datasets requires access to individual 

datapoints. Since it was not possible within the timeframe of this project to request access to 

individual datasets to perform analysis of co-occurrence patterns in HBM datasets, this chapter on co-

occurrence patterns in HBM studies is based on literature screening of studies in which co-occurrence 

patterns have been described. The primary focus was on the co-occurrence patterns as such (section 

3.2), and extended with studies providing evidence that health effects observed in cohorts can often 

be explained more accurately by exposure to mixtures rather than exposure to single chemicals (see 

CHAPTER 4).  

A full description of the literature search strategy and findings per individual study can be found in 

Appendix 3. In this chapter, key findings are described.  

3.2. SUMMARY OF KNOWLEDGE CONCERNING HBM CO-OCCURRENCE PATTERNS  

3.2.1. GENERAL DESCRIPTION OF STUDIES  

Despite the large number of humane biomonitoring (HBM) studies (see CHAPTER 2), the analysis of 

mixtures co-occurrence patterns in HBM studies seems to be a rather unexplored field. About 10 

studies were found in literature reporting co-occurrence patterns of chemicals in human 

biomonitoring datasets: 

- HELIX study – 6 regions in EU (6 birth cohorts: BIB, UK; Eden, France;  INMA, Spain;  KANC - 
Lit.; Moba- Norway; Rhea; GR); (Tamayo-Uria et al., 2019) 

- Snart Foraeldre/Milieu cohort study in Denmark (Rosofsky et al., 2017) 
- FLEHS studies in Belgium (FLEHS I, II, II & 3xG birth cohorts); (Govarts et al., 2020; Ottenbros 

et al., 2021) 
- INMA study; Spain (Robinson et al., 2015) 
- EDEN study; France (Philippat et al., 2019) 
- ELFE study; France (Béranger et al., 2020) 
- Three birth cohorts Greenland, Poland, Ukraine; (Lenters et al., 2016) 
- ASLPAC study; UK (Marks et al., 2021) 
- EXBROM study; Denmark (Frederiksen et al., 2009) 

 

A summary of description of individual studies (number and characteristics of participants, period of 

study; matrix, biomarkers of exposure) can be found in Table 1; and more details per study are given 

in Appendix 3.   
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The summary in this chapter is limited to conclusions for EU human biomonitoring studies. In Appendix 

3, the publications describing mixtures co-occurrence patterns in humane biomonitoring have also 

been extended towards non-European studies. Mainly studies from US and Canada have been found. 

The findings from these non-EU studies are consistent with the EU-studies.  

Overall, majority of the studies covered chemicals within and across groups of chemicals and pertain 

in many cases to analysis in urine or blood of newborn-mother pairs, or pregnant women. The studies 

and the year of human biomonitoring sampling is rather recent (majority is less than 10 years old), 

thus reflecting probably adequately nowadays exposure.  

Cohorts are often country or region representative cohorts of the general population for the age group 

of interest (e.g. FLEHS, ELFE cohorts). In other cases, there was no explicit description of the 

representativeness of the recruited participants in view of general population (e.g. region, SES status, 

ethnicity, etc.). None of the cohorts, except for part of the FLEHS I cohort in Govarts et al. 2020, in 

Table 1  pertain to populations living in the neighborhood of environmentally polluted sites, nor there 

were other concerns or indication for elevated exposure to chemicals.  

3.2.2. STATISTICAL APPROACHES AND UNDERSTANDING OF THE CONCEPT ‘CO-OCCURRENCE’ IN HUMAN BIOMONITORING STUDIES  

The co-occurrence patterns in these studies are based on a variety of statistical techniques including 

linear regression, heat maps, circular plots, principal component analysis (PCA) and network analysis 

(see Appendix 3).  

A technical description of these techniques and application in the mentioned studies is elaborated in 

Appendix 3. 

In brief, linear regression/correlation analysis, heat maps and circular plots express the strength of 

correlation between levels of two parameters. They differ mainly from each other in the visualization 

mode (respectively Pearson’s r value, color map, circular plot). These techniques can reveal 

correlations between two parameters but are less appropriate to reveal clusters of several 

parameters/biomarkers, or to find relation between clusters and common sources or explaining 

variables.  

Principal component analysis identifies the maximum amount of mutual correlation between groups 

of variables that explain latent variables, or components, that cannot be directly observed. Biomarkers 

are categorized under a given component based on their “loading,” which represents correlations 

between the biomarker and the underlying, latent factor, or component. Because the components are 

orthogonal, or statistically independent, biomarkers loaded within one component are said to have a 

low correlation with biomarkers loaded on all other components. The extent to which chemicals load 

to the final components may indicate common exposure sources within that component, such as 

chemicals that are found together in diet, consumer products or traffic pollution. PCA results may 

identify the extent to which chemical exposures share common sources and pathways or jointly 

contribute to disease” (Rosofsky et al., 2017). 
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Comparative network analysis (CNA) provide a graphical method to represent groups or communities 

in the data. Networks facilitates the detection of exposure patterns and allows for the systematic 

comparison of observed exposure patterns between datasets and strata within datasets. The length 

of the edges in a CNA is proportional to the inverse of the correlation between exposures.   

Irrespective of the technique used, all reported analysis of co-occurrence in the investigated studies 

(see Table 1) are based on concentration levels, and do not pertain to co-occurrence in terms of 

presence or absence of chemicals. In other words, if a pearson correlation, heat map, circos plot or 

PCA analysis indicates a strong co-occurrence of 2 chemicals (let’s say biomarkers A and B), it can be 

interpreted as follows: if concentration of biomarker A is high for an individual in the population (high 

compared to the range of levels A within that population), it is likely that this individual also has a high 

concentration of biomarker B (high compared to the range of levels A within that population). If there 

is no co-occurrence between 2 biomarkers (let’s say biomarkers C and D) this means that distributions 

of levels of biomarkers C and D are independent. If biomarkers C and D have both a detection 

frequency of 100 % in the population, this implies that in individuals have detectable levels of 

biomarker C and D, but that the magnitude of levels of biomarker C and D are independent of each 

other. 

3.2.3. ACCOUNTING FOR RESULTS BELOW LOD OR LOQ  

The treatment of non-detects in HBM datasets is of importance when investigating co-occurrence 

patterns, especially in datasets where a substantial number of samples is below LOD or LOQ for one 

or several biomarkers.  In some datasets, nearly all analytes had high detection frequencies (e.g. in 

the EDEN birth cohort: all analytes were between 98-100 % > LOD), thus no treatment of non-detects 

was needed. In some studies, the analysis of co-occurrence patterns was restricted to that biomarkers 

were detected in majority of the study population (e.g. 75 % cut off in Snart Foraeldre/ MilieuDenmark 

(Rosofsky et al., 2017)). The majority of studies did not explicitly excluded data < LOD/LOQ, but applied 

a method to treat non-detects. Ottenbros et al. (2021), Tamayo-Uria et al. (2019), Govarts et al. (2020), 

Robinson et al. (2015) and Agay-Shay et al. (2015) imputed biomarker values below LOD based on a 

imputation techniques, involving e.g. maximum likelihood estimation via single conditional imputation 

dependent on observed values for the other biomarkers. This approach resulted in a distribution in 

values below LOD, and not in the same value to replace values < LOD what is usually achieved when 

treating data with concentrations below the limit of detect (LOD) by using the LOD divided by the 

square root of two. This latter technique was previously often applied, and also in one of the 

mentioned HBM studies, i.e. Rosofsky et al. (2017). Replacing <LOD by a fixed value (such as LOD/√2) 

is more prune to ‘false’ co-occurrence patterns compared to imputation techniques because all values 

below LOD get the same value using this technique.  

In summary, several techniques have been used in the various studies to treat non-detects. Most of 

the studies used the imputation technique to address missing values (<LOD), which is considered as a 

better technique than replacing <LOD by a fixed value (such as LOD/√2).  
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In none of the studies, a sensitivity analysis or comparison of different techniques to treat non-detects 

on the outcome of co-occurrence patterns was made. However, since the majority of the biomarkers 

are detected in large portions of the population, and the state-of-the-art techniques of imputation is 

used, it can be anticipated that the non-detects do not drastically influence the conclusions of co-

occurrence patterns.  

3.2.4. GENERAL TRENDS IN CO-OCCURRENCE PATTERNS  

For a detailed description of co-occurrence patterns per study, and graphical illustrations we refer to 

description in Appendix 3.  

Overarching over different studies, the following trends and observations were made:  

1. Mainly levels of chemicals belonging to the same chemical group tend to co-occur (based on 

regression analysis, PCA or network analysis), hereby some examples:  

- PCBs co-occur with each other in human samples and this was demonstrated in; 

- in the Snart Foraeldre/Milieu cohort study in Denmark using PCA analysis (Rosofsky et al., 

2017);  

- the FLEHS cohorts using heatmaps, circular correlation globes and network detection 

techniques in Govarts et al. (2020; Ottenbros et al. (2021); (PCB 138; PCB 153, PCB 180) 

- in the INMA cohort in Spain using PCA analysis (Agay-Shay et al., 2015) (PCB 138, PCB 153, 

PCB 180); 

- in the HELIX cohorts using network analysis (Tamayo-Uria et al., 2019). 

Co-occurrence between several PCBs can be explained by the presence of several PCBs in 

technical mixtures, thus PCBs having a common source   

- PBDEs co-occur with each other in human samples and this was demonstrated in; 

- in the INMA cohort in Spain based on PCA analysis (Agay-Shay et al., 2015) (PBDEs 

together in PC 1) and based on correlation heatmaps (Robinson et al., 2015);  

- In the EXBROM cohort in Denmark, based on analysis in placental tissue. The loading plot 

showed groupings of the measured PBDE variables in three groups, representative of 

Penta-, Octa- and Deca-BDE technical mixtures. Congeners representing the individual 

technical mixtures were close to orthogonal or inversely correlated, indicating variation 

in the congener patterns of internal exposure corresponding to the patterns of technical 

mixtures used in products.  

 

- PFAS co-occur with each other in human samples and this was demonstrated in; 

- in the HELIX cohorts using network analysis (Tamayo-Uria et al., 2019); 

- in the Snart Foraeldre/Milieu cohort study in Denmark using PCA analysis (Rosofsky et al., 

2017): PFHxS and PFOS loading PC 2, while PFDeA, PFNA and PFOA loading PC 3;  

- in the FLEHS cohorts using heatmaps, circular correlation globes and network detection 

techniques (Ottenbros et al., 2021); (PFOA, PFOS, PFNA, PFHXS); 
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- Phthalates co-occur with each other in human samples and this was demonstrated in; 

- the HELIX cohorts using network analysis (Tamayo-Uria et al., 2019) (the following 

phthalates metabolites are clustered in the network: MEHP, MNPB, MBZP, ECPP, MEOP, 

OHMiNP, MIBP)  

- in the Snart Foraeldre/Milieu cohort study in Denmark using PCA analysis (Rosofsky et al., 

2017): several phthalates loading PC 3, while mono ethyl butyl phthalate loading PC 3  

- in the INMA cohort in Spain based on PCA analysis (Agay-Shay et al., 2015) (phthlatates 

constituting PC 1) and based on correlation heatmaps (Robinson et al., 2015).  

 

- Metals co-occur with each other in human samples and this was demonstrated in; 

- in the HELIX cohorts using network analysis (Tamayo-Uria et al., 2019): for mothers: on 

the one Cd, Hg and As close to each other in the network; on the other side: Cd, Pb, Co, 

Mn and Mo close to each other in the network; 

- in the Snart Foraeldre/Milieu cohort study in Denmark using PCA analysis (Rosofsky et al., 

2017): Cd, Pb, Co in PC 2, and Mn and total Hg in PC 1; while total As and arsenobetaine 

in PC 3.  

 

- Phenols occur with each other in human samples and this was demonstrated in; 

- in the HELIX cohorts using network analysis (Tamayo-Uria et al., 2019): for mothers: BUPA, 

ETPA, TRCS, PRA, ETPA, MEPA, OXBE, and BPA (the latter with a longer distance to the 

other phenols for the mothers analysis)  

 

- Pesticides occur with each other in human samples and this was demonstrated in; 

- in the HELIX cohorts using network analysis (Tamayo-Uria et al., 2019): organophosphate 

pesticides DEPT, DETP, DMP, DMTP, DMDTP are close to each other in the networks; 

- in the Snart Foraeldre/Milieu cohort study in Denmark using PCA analysis (Rosofsky et al., 

2017): persistent pesticides (hexachlorobenzene, pp—DDE- in PC 1; while other pesticides 

(paranitrophenol, 3,5,6 trichloro-2pyridinol,l diethylphosphate in PC 3).  

2. Co-occurrence across chemical families is in general weak or not present unless for chemicals 

occurring in or originating from the same sources: 

- PCBs and Hg co occur in human samples:  

- in the Snart Foraeldre/Milieu cohort study in Denmark using PCA analysis (Rosofsky et al., 

2017): Hg and PCBs load PC 1.  

 

- Mono-ethyl phthalates & parabens: 

-  in the Snart Foraeldre/Milieu cohort study in Denmark using PCA analysis (Rosofsky et al., 

2017): mono-ethyl phthalates & parabens load PC 2; the authors of this study explain this 

by personal care products as common source.   
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- Network analysis show that some chemical groups are closer to each other than others (examples 

of network analysis: see Figures 1 and 5 in Appendix 33) : e.g. in the FLEHS cohorts, PFAS and PCBs 

are in separate clusters, though the distance between those groups is shorter than e.g. the 

distance between PCBs and metals (Mn, Cu, Cd) network detection techniques (Ottenbros et al., 

2021); (PFOA, PFOS, PFNA, PFHXS). As in the HELIX cohorts, the groups of PCBs and PFAS are close 

neighboring groups in the overall network (Tamayo-Uria et al., 2019) 

3.2.5. INTERPRETATION OF TRENDS IN CO-OCCURRENCE PATTERNS FOR MIXTURES RISK ASSESSMENT  

Chemicals within the same chemical groups tend to co-occur, and also may likely cause similar effects, 

due to similar chemical structures and/or functionalities, and thus act according to dose-addition. 

Therefore, it is recommend considering chemical groups as a basis for human health risk assessment 

of mixtures, and to take into account the co-occurrence patterns. When performing human health risk 

assessment on datasets at individual level, there is no need to explicitly account for co-occurrence 

patterns, since this type of information is inherently present in databases. However, when attempting 

to use HBM datasets at aggregated level, one should be cautious and avoid considering distributions 

of chemicals as independent.  

Finally, it is important to be careful in the interpretation of lack of co-occurrence patterns. A lack of a 

co-occurrence pattern cannot at all be interpreted as the presence of those chemicals is mutually 

exclusive. Rather, it indicates that chemicals with lack of co-occurrence patterns (levels) are 

“randomly” co-occurring. Let’s say if chemical A and B are both detected in the entire population, but 

they lack a co-occurrence patterns based on levels, it means that they both occur in every sample in 

the population, but the concentration levels of A and B are independent of each other.  A lack of co-

occurrence regarding levels of human can also be regarded as substances having independent 

distributions.  
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Table 1: Overview of publications investigating mixtures patterns in European HBM studies. 

Name of Cohort # 
participants 

Characteristics of cohort # of chemicals/ 

biomarkers  

Chemical (groups) Matrix # samples > LOD and 

 treatment in  analysis 
of co-occurrence  

Reference 

Sub cohort of HELIX (6 EU 
birth cohorts: BiB, EDEN, 
INMA, KANC, MoBA and 
Rhea) 

1301 Mother-child pairs 87 (pregnancy) 

122 (childhood)  

Organochlorine compounds 
PBDEs 
PFAS 
Metals and elements 
Phthalate metabolites 
Phenols 
Organophosphate pesticide 
metabolites 
Cotinine 

Serum, plasma, 
blood or urine 

/ (Tamayo-Uria et al., 
2019) 

Snart Foraeldre/ Milieu 

Denmark  

73 

 

Danish women (18-40 
years) from the general 
population who stopped 
using contraception 
because they wished to 
become pregnant 

 

135 Cotinine 
Metals 
PAH 
BFRs 
Herbicides 
Insecticides 
PCBs 
Pesticides 
Perchlorates 
Phenols 
Parabens 
Phthalates 
Phytoestrogens 
PFAS 

Blood, 

Serum or 

Urine 

Analysis restricted to 
biomarkers that were 
detected in 75% of the 
study population 

(Rosofsky et al., 
2017) 

4 Flemish birth cohort: 

FLEHS I, II & III and 3XG 

(Belgium) 

1579 Flemish mother-newborn 
pairs 

7 PCBs 
Hexachlorobenzene 
p,p’-DDE 
Cadmium 
Lead 

Cord blood 1.1–27% depending on 
the compound 

(Govarts et al., 
2020) 

3 Flemish birth cohort: 

FLEHS I, II & III (Belgium) 

281 Flemish mother-newborn 
pairs 

19 Organochlorine compounds 
PFAS 
Metals  

Cord blood At least 60% of the 
measurements above 
LOD 

(Ottenbros et al., 
2021) 
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Name of Cohort # 
participants 

Characteristics of cohort # of chemicals/ 

biomarkers  

Chemical (groups) Matrix # samples > LOD and 

 treatment in  analysis 
of co-occurrence  

Reference 

INMA, Sabadell Spain 728 Pregnant women 81 Organochlorines 
PFAS 
Mercury 
PBDEs 
Metals 
Phthalates 
BPA 
Cotinine 

Serum 
Cord blood 
Breast milk 
Urine 

If analyte was 
nondetectable in > 
85% of samples, 
biomarkers was 
excluded 

(Robinson et al., 
2015) 

Flemish birth cohort FLEHS 
II 

(Belgium) 

248 Flemish mother-newborn 
pairs 

15 Metals  
PCBs 
P,p’-DDE 
PFOS 
POFA 
MECPP 

Cord blood 
Maternal whole 
blood 
Plasma cord  
  

0-21% of n < LOD/LOQ (Govarts et al., 
2016) 

INMA, Sabadell Spain 657 Mother-child (7 years of 
age) pairs 

27 BPA 
Phthalates 
Metals (arsenic, lead and 
cadmium, mercury) 
Organochlorine pesticides 
PC 
PBDEs 

Uri 
Maternal blood 
Cord blood 
Maternal colostrum 

n samples < LOD varies 
between 0 and 100 

(Agay-Shay et al., 
2015) 

EDEN birth cohort, France 473 Mother-son pairs 20 9 phenols: 
4 parabens, 2 dichlorophenols, 
Triclosan, benzophenone-3 and 
BPA 
11 phthalate metabolites 

Urine  All analytes were 
between 98-100% > 
LOD 

(Philippat et al., 
2019) 
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Name of Cohort # 
participants 

Characteristics of cohort # of chemicals/ 

biomarkers  

Chemical (groups) Matrix # samples > LOD and 

 treatment in  analysis 
of co-occurrence  

Reference 

ELFE nationwide birth 
cohort, France 

311 Women who gave birth to 
liveborn singleton ≥ 33 
weeks of gestation 

64 Organochlorines 
Organophosphorus 
Pyrethroids 
Carbamates 
Dinitroanilines 
Thiocarbamates 
Phenylpyrazoles 
Acid herbicides 
Azoles 
Oxadiazines 
Triazines/triazones 
Amide pesticides 
Strobilurins 
Carboxamides 
Urea 
Neonicotinoids 
Anilino-pyrimidines 

Maternal hair 28 of 64 pesticides and 
metabolites were 
detected in > 70% of 
samples, 

10 were detected in 
50-70% of the samples, 

10 were detected > 
50% of the samples 

(Béranger et al., 
2020) 

Three birth cohorts:  

Greenland, Poland and 
Ukraine 

1250 Mother-infant pairs 16 Secondary metabolites of DEHP 
and DiNP, 
PFASs 
organochlorines 

Maternal serum All 16 biomarkers were 
quantifiable in at least 
72% of serum samples 

(Lenters et al., 
2016) 

Avon Longitudinal Study of 
Parents and Children 
(ASLPAC), UK 

448 Mother-female child pairs 52 8 PFAS 
35 PCBs 
9 organochlorine pesticides 

Maternal serum EDCs detected in 
greater than 75% of 
mothers were included 
in the main analyses. 

(Marks et al., 2021) 

EXBROM 50  First time mothers 12 PBDEs Placental samples Frequency of detection 
from 6% (BDE-17); to 
16 % (BDE-66; DBE-85, 
BDE-183) over 22 % 
(BDE-28) to 72 % (BDE-
100), and >= 88 % 
(BDE-47: BDE-99; BDE-
153; BDE-154 and BDE-
209)  

(Frederiksen et al., 
2009) 
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 RELATION BETWEEN MIXTURES EXPOSURE AND HEALTH 
OUTCOMES 

Despite the large number of humane biomonitoring (HBM) studies, analysis of mixtures in HBM seems 

to be a rather unexplored field.  

In this study, we performed a limited literature study on studies describing chemical co-occurrence 

patterns in relation with health outcomes. We focused thereby first on European HBM studies. 

However, studies from outside EU have also been considered because they may report other 

techniques and groups of substances.  Both the snowball method and the use of key words in Pubmed 

and Web of science were applied as a search strategy (Chapter 2 in Appendix 3).  

The results from this limited literature study should be regarded in view of the selected keywords 

(Chapter 2 in Appendix 3). A wider scope of keywords and search strategy might have revealed 

additional studies. However, an extensive literature search was out of scope of this project.  

These search results were first screened for relevant titles after which the abstract was read to 

determine if the particular publication was suitable for inclusion in this report. The majority of these 

studies focus on perinatal exposure (exposure assessment in cord blood of newborns, breastmilk, 

urine, blood/serum of the pregnant mothers) in relation to perinatal health outcomes (birth weight, 

placental weight, birth length, head circumference), or in relation to longitudinal studies (e.g. BMI at 

7  years; early menarche of female offspring).  

This chapter summarizes findings from key studies in the EU.  

Twelve out of a total of twenty-four identified studies (Appendix 3) reported  stronger associations for 

mixture exposure were observed compared to single pollutants. This observation may simply be 

explained of the fact that the remaining studies did not investigate single pollutant associations and 

solely focused on mixture effects, except for the study of Reyes et al. (2018). These authors namely 

concluded that the largest risks tended to occur in individuals whose exposure were dominated by a 

single phthalate.  

In the FLEHS II cohort was arsenic significantly associated with reduced birth weight in single pollutant 

models (91 g; 95% CI: 17; 164 g). The effect estimate increased when including cadmium and mono-

(2-ethyl-5-carboxypentyl) phthalate (MECPP) co-exposure (effect estimate = -121 g; 95% CI: -201; -42 

g). Combining exposures by principal component analysis generated an exposure factor loaded by 

cadmium and arsenic that was associated with reduced birth weight. MECPP induced gender specific 

effects. In girls, the effect estimate was doubled with co-exposure of thallium, PFOS, lead, cadmium, 

manganese and mercury (estimate = -235 g; 95CI: -369; -102 g), while in boys, the mixture of MECPP 

with cadmium showed the strongest association with birth weight (estimate =  -129 g; 95% CI: -220; -

37 g). Govarts et al. (2016) and Govarts et al. (2020) concluded that some chemicals (i.e.. Cd, Pb, PFOA 

and MECPP) not showing significant associations at single pollutant level contributed to stronger 

effects when analyzed as mixtures at the exposure levels occurring in this cohort.  
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In the IMNA study, exposure to the highest tertile compared with the lowest tertile of the 

organochlorine factor (factor 3: loaded with  organochlorines perinatal exposures – blood and urine 

of mothers) was associated with a significant increase in the z-BMI of the 7-years old with a RR of 0.37 

(95% CI: 0.03 - 0.72) and with an increase in the RRs of overweight of 2.59 (95% CI: 1.19, 5.63) (Agay-

Shay et al., 2015). 

In the French EDEN mother-sons cohort (Philippat et al., 2019) evidence of possible associations 

between triclosan, benzophenone-3, MCNP and MCOP and effects on placental weight and  placental-

to-birth-weight ratio PFR was given. Triclosan (β = -4.11 g; 95% CI: -8.26; 0.05 g) and MNCP (β = -10.9 

g; 95% CI: -21.8; 0.09 g) were negatively associated with placental weight while benzophenone-3 (β = 

4.76 g; 95% CI: -1.77; 11.3 g) and the sum of parabens (β = 7.12 g; 95% CI: 0.41; 13.9 g) were positively 

associated with placental weight. MNCP (estimate = -0.20; 95% CI: -0.54; 0.13) and MCOP (βestimate 

= -0.23; 95% CI: -0.58; 0.11) were negatively associated with PFR. The fact that the direction of the 

associations with placental weight differed across biomarkers might indicate different mechanisms of 

action.  

The ELFE French nationwide birth cohort (Béranger et al., 2020) demonstrated statistically significant 

associations between maternal hair concentrations of mixtures of pesticide metabolites and birth 

measurements (weight: fipronil sulfone; length: TCPy, bitertanol, DEP, and isoproturon; head 

circumference: tebuconazole and prochloraz). The authors observed statistically significantly higher 

BW for a medium (βadjusted = +150 g; 44, 255), exposure to fipronilsulfone (βadjusted = +28 g; −84, 141). A 

statistically significantly lower body length associated with the intermediate (βadjusted=−0.64 cm; −1.15, 

−0.14) exposure to DEP as well as with the hair concentration of TCPy (per 2-SD increase in log-

transformed concentration: βadjusted=−0.42 cm; −0.85, 0.00).  Statistically significantly higher body length 

was also observed among children of women with detectable bitertanol (βadjusted = +0.60 cm; 0.09, 1.10), 

and isoproturon (βadjusted = +0.55 cm; 0.11, 1.00) in hair. Finally, a statistically significantly larger head 

circumference was associated with prochloraz (detected vs. not: βadjusted = +0.57 cm; 0.17, 0.97) and 

tebuconazole (detected vs. not: βadjusted = +0.31 cm; 0.01, 0.61). In data from three birth cohorts 

(Greenland, Poland, Ukraine), mixtures of phthalate metabolites (MEHHP, MOiNP), perfluorooctanoic 

acid (PFOA), and p,p´-DDE were most consistently predictive of term birth weight based on elastic net 

penalty regression (Lenters et al., 2016). 2-SD increases in natural log–transformed MEHHP, PFOA, 

and p,p´-DDE were associated with lower birth weight: –87 g (95% CI: –137, –340 per 1.70 ng/mL), –

43 g (95% CI: –108, 23 per 1.18 ng/mL), and –135 g (95% CI: –192, –78 per 1.82 ng/g lipid), respectively; 

and MOiNP was associated with higher birth weight (46 g; 95% CI: –5, 97 per 2.22 ng/mL). 

Marks et al. (2021) investigated the associations between prenatal exposure to PFAS, PCBs and 

organochlorine pesticides as mixtures with early menarche among female offspring. No significant 

relations or interactions were found. 

For further details regarding individual studies, and results from similar non-European studies we refer 

to Appendix 3.  

In summary, statistically significant associations between mixtures exposure (from nowadays levels of 

chemicals present in humans assessed by human biomonitoring) and health effects in the (vulnerable 

groups of) general population have been reported in several studies.   
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Not all effects were observed using single chemical models, and associations were stronger when 

mixtures were considered compared to single chemical exposure associations. Current exposure 

levels, for example PCBs, in human bodies were often caused by historical contamination, but are still 

found in human samples due to the persistency and long half lifes. 

While some studies reported associations between mixtures exposure and adverse health outcomes, 

there were also some studies showing presence of mixtures in biofluids, where no adverse effects 

were observed. An overarching conclusion over different studies is difficult to draw given the 

differences in characteristics in chemical mixtures, different methodologies and different outcomes 

and different cohorts investigated across studies.    

At the same time, it’s important to realize that the current epidemiological knowledge on mixtures in 

relation health effects is mainly focused on a specific, vulnerable subpopulation (newborns), 

considering generic health outcomes and a limited list of chemicals Epidemiological studies 

considering effects of mixtures in other vulnerable populations and life stages (e.g. puberty, elderly) 

and other types and more specific categories of health effects (e.g. effects of mixtures on 

neurodevelopmental effects, cardiovascular effects, respiratory system, immunological effects, etc.) 

remain to be investigated. Additionally, the associations between health outcomes and mixtures 

pertain often to legacy chemicals, which have been used in the past, but are currently no longer used 

or only used in exceptions (e.g. POPS under Stockholm Convention, chemicals under Restriction or 

Authorization). In view of the discussion of MAF for REACH chemicals, it would be very useful to have 

this type of analysis performed also on mixtures of non-legacy chemicals.   

Overall, mixture exposure might lead to adverse effect on human health and this observation should 

trigger human health regulatory risk assessment to also consider mixtures.    
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 USE OF HBM DATA IN HUMAN HEATLH MIXTURE RISK ASSESSMENT 

Whereas some epidemiological studies demonstrate that human exposure to mixtures reveals a 

better model to explain health effects in the general population compared to single chemical exposure 

(see CHAPTER 4), the statistical models (or RR) described in these studies cannot be used in regulatory 

risk assessment concepts such as RCRs under REACH.  

In this chapter, we elaborate the mixtures risk assessment case studies using human biomonitoring 

data, and discuss outstanding issues that should be further investigated to move forward to use 

human biomonitoring data in risk assessment practices and regulatory risk assessment. A practical 

instrument to preform mixtures risk assessment is the combined maximum cumulative ratio (MCR) 

and Hazard Index (HI) approach.  

The HI of a sample (biofluid sample) is the sum of hazard quotients (HQ) of several chemicals present 

in the biofluid. In its turn, the HQ is the ratio of the concentration (exposure level) to the health-based 

guidance value per substance. The HI thus represents the risk of the mixtures, based on sum of risks 

of components in the mixtures. Usually, first the HI approach is applied and only in case of a HI > 1, 

one wants to look further to estimate whether the mixture risk is caused only by one or a few 

chemicals. This might obviously be of help for indicated risk management measures. 

The MCR approach is an extension of the hazard index (HI) which is commonly used as a screening 

tool for evaluating mixture toxicity (Meek et al., 2011). In addition to HI, MCR quantifies the 

significance of cumulative toxicity compared to single component toxicity and is a tool for investigating 

the magnitude of the toxicity potentially missed if a cumulative risk assessment is not performed (Han 

and Price, 2011). As described in Han & Price (2011), the MCR can be calculated using the hazard 

quotients (HQs) for each substance present in a mixture and the hazard index (HI) of the mixture. The 

value of MCR for an individual exposed to a mixture of n substances in an environmental media is 

calculated by:  

𝐻𝑄𝑖 =  
𝐶𝑖

𝐺𝑉𝑖
⁄     

 𝐻𝐼 =  ∑ 𝐻𝑄𝑖𝑖        

𝑀𝐶𝑅 =  𝐻𝐼
max 𝐻𝑄𝑖

⁄  

where Ci is the concentration or the exposure (dose) of the ith substance to which an individual is 

exposed and RVi is the health-based guidance value (GV) of substance i (expressed as a concentration). 

HQi is the hazard index of the individual's exposure to the ith substance. The MCR of the individual's 

exposure to the mixture is the ratio of the HI of the mixture to the maximum of the hazard quotients 

of the individual components (max HQi).  
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Ideally, in the context of human biomonitoring data, the Ci in the nominator refers to exposure 

biomarkers levels in biofluids (biomonitoring data), and the GVi in the denominator is the 

corresponding health based human biomonitoring guidance (HBM-GV) value for i.  However, in 

practice, we see often, by lack of available HBM values for several substances, an alternative approach: 

using reverse dosimetry from biomarker levels to external dose (nominator), in combination with HB 

GV for external exposure (see further). 

Both the HI and MCR (based on the HI) approaches are based on the hypothesis of dose addition, 

which is considered a conservative assumption for evaluating mixture effects of non-carcinogenic 

substances (Meek et al., 2011), especially when applied in a low tier mixtures without considering 

communalities in endpoints or mode of action. The MCR ratio is bounded by 1 and n (n= the number 

of analyzed substances in the mixture). An MCR close to 1 means that one substance is responsible 

for nearly all the toxicity of the mixture. Exposures to a mixture of n substances with equal toxicities 

would have an MCR of n. The MCR and HI approach can also be used in a higher tier approach, where 

the summation of HI considers only chemicals affecting the same health effect or according the same 

mode of action.  

In addition to the HI and MCR approach, also the EFSA ‘cumulative assessment groups’ (CAG)  

approach offers a practical approach to perform mixtures risk assessment, and is most applied to the 

domain of pesticides (EFSA, 2013). This is a clear higher tier approach which makes sense as for 

pesticides risk assessment huge information requirements exist. In the CAG approach, grouping of 

substance according to mode of action and information on the toxicological profiles is already taken 

into account by default in pesticides mixtures risk assessment.  

In addition to the HI and CAG approaches, also other approaches to perform mixtures risk assessment 

(e.g. the use of the HI-interaction method, the use of the Relative Potency Factors, etc.) are described, 

often to be used in higher tier mixtures risk assessments. For more details, we refer to the review 

paper of Kienzler et al. (2016). 

In this report, we mainly focus on the HI/MCR approach since this is the most widely used method 

applied on human biomonitoring data, and because the MCR value is most useful in trying to estimate 

the level of the MAF factor (Backhaus, 2015).   

5.1. APPLICATION OF HI AND MCR ON HUMAN BIOMONITORING DATA  

In several publications, the HI and MCR concept have been applied in human biomonitoring data. 

Nearly all publications deal with mixture risk assessment covering risks of substances within a chemical 

group. Combining risks from chemicals belonging to the same group in a HI make sense since chemicals 

belonging to the same group of chemicals have similar chemical structures and/or functionalities, and 

therefore, they may cause similar effects and have similar behaviour in terms of their absorption, 

distribution, metabolism and excretion, resulting in similar toxicokinetics and so clustering in their 

fate. Consequently, they are more likely to act according to dose-addition, and thus combining HQs in 

HI is a reasonable approach. Hardly any of the publications calculated risks across chemical groups.   
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This make sense since chemicals belonging to different group of chemicals different chemical 

structures and/or functionalities, and therefore, are likely to cause different effects. The issue is that 

different chemicals may have completely different toxicity, that is to say one chemical might cause 

liver damage and the other chemical neurotoxicity. The application of dose addition is in that case a 

worst-case scenario in a low tier (conservative HI). In this example of only two chemicals, the mixture 

risk is probably absent. Notwithstanding that it’s less likely that several chemicals belong to different 

groups cause similar effects, it cannot be excluded at priori that chemicals belonging to different 

groups cause similar effects. Several authors point to consider further mixtures risk across chemical 

groups (Borg et al., 2013; Kortenkamp, 2020). Hereto, further developments should be made in view 

of gathering detailed toxicological information for grouping, point of departure values for relevant 

endpoints, and adverse outcome pathways, to enable mixtures risk assessment across chemical risk 

assessment in a higher tier approach (e.g.; using the Point of Departure Index, instead of the HI 

approach).  

Calculation of HI and MCR across chemical groups in a low tier approach (based on additivity for all 

compounds in the mixture, irrespective of common health effects or not and combining critical 

guidance values that likely reflect a diversity of health endpoints across substances) is theoretically 

possible for human biomonitoring datasets, as was previously done for indoor air mixtures and 

drinking water mixtures as a relevant matrices for external human exposure (De Brouwere et al., 2014; 

Han and Price, 2011; Szabados et al., 2021). However, we did not find literature describing the use of 

the HI/MCR concept in such a low tier, screening approach with no distinction between relevant health 

endpoints with HBM data. This is likely because a low tier, screening assessment for human 

biomonitoring would go with a significant higher likelihood of finding individual HBM samples with HI 

> 1. This would prompt to shift from a low tier, screening assessment to higher tier assessment. For 

higher tier assessments, considering of grouping based on health effects and endpoint specific PODs 

for common effects is recommended (Meek et al., 2011); and this type of assessments is also what we 

found in literature (see further). Additionally, the use of low tier methods for hazard assessment 

(grouping all substances, irrespective of communalities in health effects) in combination with high tier 

level for exposure assessment (using HBM data) would rather be unbalancing the tiered levels of 

hazard versus exposure in the tiered approach (Meek et al., 2011).  On the other hand, if HI<1 for the 

majority of the individuals using the conservative low tier approach, then mixture risks can be 

reasonably excluded and no further work would be indicated. 

5.1.1. HBM MIXTURES RISK ASSESSMENT WITHIN GROUPS OF CHEMICALS  

Majority of the HBM HI/MCR studies within chemical groups pertain to mixture risk assessment for 

phthalates, with a focus on risk for reproductive and developmental toxicity by anti-androgenic modes 

of action, since this is the critical and common health effect of several phthalates.  

Apel et al. (2020) included in their paper a review of mixture risk assessment for phthalates, including 

7 EU studies (4 studies in Denmark, 1 study in Belgium, 1 study in Poland, 1 study in Austria and 1 in 

Germany) and studies in Taiwan, USA, China, Iran, South Korea and Brazil. Results described in this 

section are based on the EU studies.   
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The studies calculated HI and MCR on individual datapoints in datasets and relied on back-calculation 

of HBM data (urinary levels) to external exposure estimates, which are used in HI calculations, in 

combination with TDIs (external health-based guidance values – HB GV) for single phthalates. To 

varying degrees, these studies revealed exceedances both of acceptable single as well as (expected) 

combined phthalate exposures. For example, the 95th percentile HI of a children study in Denmark was 

2.3 (Bekö et al., 2013)).  Due to their high prevalence and high potency in disrupting male sexual 

development, DBP and DEHP generally contributed most to the HI. According to Apel et al. (2020), the 

outcomes of these various phthalate mixture risk assessments are difficult to compare because of 

three reasons. Firstly, different phthalates and numbers of phthalates were investigated in the 

different studies. Secondly, the studies used often different HB GV, e.g. TDI for phthalates (EFSA 2005) 

versus RfD for phthalates from A. Kortenkamp & Faust (2010) or new RfD for anti-androgenicity for 

phthalates from (Kortenkamp and Koch, 2020). This factor might lead to a 5-fold difference in HI 

values, if all other factors are kept constant. Thirdly, there is also evidence that phthalate exposures 

have undergone changes over the years (Apel et al., 2020). This time trend was analyzed by Apel et al. 

(2020). They performed HI and MCR calculations for each participant from the German Environmental 

Specimen Bank, which is a 27-year survey of urinary phthalate metabolite levels in 24-hour urine 

samples.  

The decreasing phthalate exposures over the last decades led to declining HIs. Whereas the geometric 

mean HI was 1.8 in 1993, it dropped to 0.2 in 2015. Similar, the 95th percentile HI dropped from 7.5 in 

1993 to 0.55 in 2015 (while keeping the exposure assessment method and RfDs constant over the 

calculations). Apel et al. (2020) attributed this decrease to the decreasing HQs for DBP and DEHP over 

time as internal exposure levels (HBM data) decreased over time. By contrast, they found the HQs for 

the other phthalates fluctuated or even increased slightly (DINP) between 1988 and 2015. As a result, 

the more recent HIs were driven by a greater number of phthalates, reflected in the slight upwards 

gradient of the regression lines of MCR versus study year (increase of MCR from 1.5 to 1.8 for the 

geometric mean, and a value from 2.0 to 2.5 for 95th percentile MCR).  

Additionally, studies on application of HI and MCR concept on human biomonitoring data were found 

for parabens (Moos et al., 2017), dioxins, furans and PCBs (Han and Price, 2013), pesticides (F. 

Fernández et al., 2020; Katsikantami et al., 2019) and PFAS (Borg et al., 2013).   

The study regarding parabens (6 parabens: MeP, EtP, iso-PrP, n-PrP, iso-BuP, n-BuP) was based on the 

same database (German Environmental Specimen Bank) and method for HI calculations as the case 

study on phthalates (Apel et al., 2020) (i.e. also using reverse dosimetry from biomarker levels to 

external exposure). For the hazard assessment, the group ADI from EFSA for MeP + EtP was used. For 

the other parabens, by lack of an official health based guidance value, (Moos et al., 2017) used the 

benckmark (NOEL) used by Scientific Committee on Consumer Safety (SCCS), in combination with an 

Uncertainty Factor of 100. Common health effects are endocrine effects. As a result, median HI within 

the population (n = 660) was 0.1, while the HI at the 95th percentile and a maximum HI were 

respectively 1.3 and 4.4. n-PrP was the most influential contributor to the HI, followed by other longer 

chain parabens. At the 95th percentile the contribution of n-BuP to the HI is ∼20%, and the contribution 

of iso-BuP is ∼ 5%. The short-chain parabens (MeP and EtP) only play a small role in the cumulative HI 

of the parabens. Moos et al., 2017 did not report MCR values. It can be derived from the  data that 

MCR is rather low given the dominance (> 50 %) of n-PrP in the median, P95 and maximal HI.    
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The study on dioxins and PCBs (26 compounds), performed on HBM samples from the NHANES cohort 

(US) and two occupational studies in the US, focused on MCR rather than on HI (Han and Price, 2013). 

Although the two occupational groups have higher total toxicity equivalence (TEQ) levels than the 

NHANES group, average MCR values of the three groups are similar (3.5, 3.6, and 3.2). The MCR values 

also indicated that only 2-5 of the 26 chemicals make significant contributions to total TEQ values (Han 

and Price, 2013).  

The Spanish pesticides study of F. Fernández et al. (2020) evaluated cumulative risks using 26 

metabolite biomarkers of organophosphate pesticides (OP), herbicides and pyrethroids in urine of 568 

children.  

F. Fernández et al. (2020) evaluated cumulatieve pesticide risk using two different strategies: one 

based on the pesticides' mode of action (MoA) as grouping method in combination with the HI 

appraoch and the other based on cumulative assessment groups (CAGs) approach, proposed by EFSA. 

Three separate HI were calculated: The HI was calculated for the group of organophosphates (OPs), 

thus not including the herbicides and pyrothroids with the argumentation that they should be 

assessed separately since they have different mode of actions. HI for OPs was calculated adding the 

HQs of chlorpyrifos-ethyl (ΣDEPs) and dimethoate (ΣDMPs) using the  their estimated daily intake 

(external dose),  back-calculated from dialkyl phosphates (DAP) concentrations in urine, i.e. the 

representative metabolites of almost the entire OPs family. The HI for the OP group was <1 in the 

entire cohort. Dimethoate contributed most to the HI. For the other pesticides (parathion, and ƛ-

cyhaolthrin), HQ was calculated (P95 HQ < 1), but these were not included in any HI calculations. The 

data presentation  in paper did not allow to estimate MCR values.  

A second study using HBM pesticides data used aggregated data for cumulative exposure to 

malathion, diazinon, parathion, phorate and dimethoate (Katsikantami et al., 2019). The authors used 

literature data from various HBM studies.  Median HI values for children ranged between 0.016 and 

0.618, for pregnant women between 0.005-0.151, for the general population between 0.008-0.206 

and for farmers between 0.009-0.979. Combined exposure to dimethoate and phorate was the worst-

case scenario. However, the assessment was made on aggregate data, and not in individual data, 

which makes the assessment more difficult to interpret. Not only the use of aggregated data makes 

this assessment harder to interpret, also the combination of several studies (different cohorts, age of 

study, profile of participants) makes the interpretation of relevance for real life exposure difficult. No 

information on MCR values could be derived.  

Borg et al. (2013) assessed the cumulative risk of 17 PFAS substances in the Swedish population (2006-

2013). In contrast to the prevous described studies, the HQ was based on the ratio of levels in serum, 

to the point of departures expressed as internal dose (µg/ml serum), and thus avoiding uncertainties 

in reserve dosimetry. It is noted that the values they used are no official HBM GV, but toxicogical data 

obtained from literature researches, performed within that study. For PFAS with lacking information 

of POD expressed as serum levels, the authors used read acros techniques.   

One case study covered urinary levels of the general population, indirectly exposed to PFAS via the 

environment, and an occupational group of professional ski waxers. They included 6 small HBM 

studies (n = 9-80) from 2006 onwards.   
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They did not perform RA on all individuals of the cohorts; instead the highest concentrations at the 

latest time-point in a temporal study or from a sample in a snapshot study were selected to perform 

the RA. The toxicological endpoints evaluated were hepatoxicity, reproductive toxicity, immunology 

and mammary gland development. The HQ of PFOS for immunotoxicity for the general population was 

very high (HQ = 229), as well as the HQ for mammary gland development for PFOA (HQ = 18). For these 

two effects/substances, single substances risk assessment points out for concern; therefore mixture 

risk assessment is less relevant. For the other considered  health effects (hepatoxicity and 

reproductive toxicity) the HQ for the single substances was < 1, and the HI of the mixture was 0.27 

and 0.18 respecitevely for hepatoxicity and reproductive toxicity. For both effects, PFOS dominated 

the HQ (64 % of HI for hepatoxicty and 76 % of HI for reproductive toxicity). In a separate  high exposed 

subpopulation eating PFOS-contaminated fish, the HI were higher (HI for hepatoxicty: 1.4; driven by 

PFOS; 90 % of HI). For occupational exposed group (ski-waxers), HQ for PFOA was 3.8 for 

hepatotoxicity, and HQ for PFOA was 0.85 for reproductive toxicity and PFOA was the main contributor 

the mixtures toxicity.  Hence,  we also see 1-2 compounds dominating the risk of the mixtures in this 

study. Nevertheless, since PFOA and PFOS are phasing out, the use of other PFAS is increasing, which 

is visible in more recent HBM studies. Therefore, the pattern of dominance of PFOS and PFOA in the 

mixture toxicity is likely to decrease, and more PFAS might play a dominant role in the HI in the future.  

5.1.2. HBM MIXTURES RISK ASSESSMENT ACROSS GROUPS OF CHEMICALS  

There are some exception on the finding that HI calculations are limited to chemicals within a group. 

For example, the human health mixture risk assessment of A. Kortenkamp & Faust (2010) included 

exposures to a combination of 15 chemicals: phthalates (DBP, BiBP, BBP, DiNP, DEHP), pesticides 

(vinclozolin, prochloraz, procymidone, linuron, fenitrothion, pp’DDE), a flame retardant (BDE-99), 

bisphenol A, and parabens (butyl paraben and propyl paraben), all being substances capable of 

producing reproductive and developmental toxicity by anti-androgenic modes of action. In their 

analysis, A. Kortenkamp & Faust (2010) assessed exposure to those chemicals from a diversity of 

(mainly) EU sources and approaches (not limited to human biomonitoring; they also included external 

exposure estimates based on food consumption), and used reference doses for anti-androgenicity 

(RfD AA) in the denominator of the HI value. Reference doses were retrieved from EFSA opinions and 

EU documents. For substances where the exposure was assessed using HBM data, the, reverse 

dosimetry was used to calculate exposure (as nominator in the HQ).  

A. Kortenkamp & Faust (2010) calculated a HI of 0.38 for a median intake scenario, and a HI of 2.01 

for a high intake scenario. The substances contributing most to the HI were DEHP (24 %), vinclozolin 

(32 %), butylparaben (16%) in case of the median scenario. Other substances had a contribution < 

10%. 6/15 six chemicals made up 91% of the HI for the median scenario. In case of the high intake 

scenario, substances contributing most to the HI were butylparaben (50%) and prochloraz (14 %). The 

HQ’s of 7/15 chemicals explained 94% of the HI for the combination of the 15 anti-androgens in the 

high intake scenario.  

A. Kortenkamp & Faust (2010) did not calculate MCR values. Based on their data, we estimated MCR 

values of 2.0 and 3.2 for the median and high intake scenario respectively.   
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However, it is important to mention that A. Kortenkamp & Faust (2010) did calculate HI on aggregate 

data, and constructed a median scenario based on median exposures from all chemicals, and a high 

intake scenario based on a combination of high intakes (mostly based on 95th percentiles) of the 15 

chemicals. This is obvious deviating from the standard approach of using individual records in mixture 

risk assessment. It is questionable if a combination of high intakes (95th) of 15 chemicals is realistic 

within the population. And therefore, it is also questionable whether the value of HI of 2.01 for the 

high intake scenario would correspond to the 95th percentile of HI if based on individual data. An 

indication here can be found in the study of Willey et al. (2021). They developed the Exposure Load 

(EL) concept. The EL calculates “to how many chemicals, persons are simultaneously internally 

exposed above a predefined threshold” e.g. EL 50, EL 95; They applied the EL on Canadian Health 

Measurement Survey (CHMS), a Canadian HBM study 2012-2015 involving 1858 participants aged 12-

79 years, and 44 analyte biomarkers representing 26 chemicals. At the threshold of the 95th percentile, 

the majority of the Canadian population had an EL between 0 and 3. 4 % of the population had an 

exposure load of 12. Few participants had an EL up to 15 or 17; none had an EL > 18. Notwithstanding 

this is a study from another region and is limited to one study, the study of Willey et al. 20201 indicates 

that combining 95th percentiles of all chemicals does not reflect a realistic P95 scenario (about 

combining 95th percentiles for half of 2/3 of chemicals would be more realistic).  

Nevertheless, the concept of applying HI and MCR calculations on substances across chemical groups 

considering common health effects, is interesting. It would be useful to apply their concept on 

individual exposure data records instead of aggregated data.  

5.2. FURTHER REFLECTIONS AND DISCUSSION ON THE USE OF HBM DATA IN MIXTURE RISK ASSESSMENT  

5.2.1. DOMINANCE OF LIMITED SET OF CHEMICALS IN MIXTURE TOXICITY?  

In the majority the cited references, a few compounds drive the toxicity (MCRs typically 2-3). However, 

two important considerations should be made: this conclusion is often based results from within group 

chemicals mixtures risk assessment, with a limited number of substances considered (e.g. phthalates: 

often only 4-6 compounds considered). It should be further investigated whether this dominance of a 

few compounds is still valid when considering across chemical groups risk assessment, considering 

time trends where substitution towards more compounds (e.g. PFAS and phthalates) is likely to occur.  

5.2.2. INFLUENCE OF NON-DETECTS ON HI AND MCR  

As discussed by Price & Han (2011) non-detects (NDs) are a significant issue in the HI and MCR method. 

For the majority of the HBM4EU priority chemicals, at least one exposure biomarker is detected > LOD 

in nearly all samples (see previous chapters). We checked how the authors in the abovementioned HI 

and MCR papers dealt with this issue. Several replaced values < LOD by a value of LOD/(sqrt 2), or by 

imputation techniques. Han & Price (2013) trimmed their datasets by removing people where NDs 

had a significant impact on the MCR. Apel et al. (2020) mentioned that none of their findings was 

sensitive to their treatments of non-detects (since non-detected scarce in their dataset).  
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Other authors did not report explicitly on the impact of ND treatments on the HI or MCR values. From 

a few studies, we could derive that the impact is probably rather low. For example, in the PFAS study 

of Borg et al. (2013), exposures were reported < DL for PFDoDA, PFTrDA, PFTeDA and 6.2 FTS, but the 

contribution of exposures to HI for hepatoxicity and reproductive toxicity was < 1 %, which the 

exception of 5.9 % for 6.2 FTS for reproductive toxicity. Moos et al. (2017) had for 2/6 parabens levels 

< LOD in majority of the samples (iso-PrP, iso-BUP). They substituted values < LOD by LOD/2; however, 

they did not report on the impact on the HI.  

When a lot of non-detects are present in the datasets, it is recommended to use imputation 

techniques for values < LOD, since imputation techniques are in literature currently regarded as the 

most appropriate method to deal with value < LOD. It is also recommended to assess the impact of 

covering non-detects in the HI (cfr. Moos et al., 2017), to get a feeling on the potential importance of 

non-detects in the mixture risk assessment.    

5.2.3. CHOICE OF HEALTH BASED GUIDANCE VALUE IN HI CALCULATIONS 

The value for the denominator in the HQs and HI might have an important impact on the outcome of 

the HI. The GV (denominator in HQ) reflects the health-based guidance value for that substance. In 

view of HBM data, we see two practices: 1) the use of a RV for internal exposure (human biomonitoring 

guidance value or HBM GV) and, 2) the use of reference value for external exposure  

The first approach is the most straightforward one, since a direct use of HBM monitoring data in the 

HQ calculations is possible. The second approach requires reverse dosimetry from HBM levels to 

external dose (for the nominator in HQ). The latter introduces uncertainties given that the reverse 

dosimetry is based on point estimates for empirical molar extraction factors (Fue), for which the values 

are rather uncertain.  None of the authors explicitly calculated the impact on uncertainty of the Fue 

value on the HI. However, Fue is very sensitive to fluctuations in the exposure, especially for chemicals 

with relatively short half-life and at the same time. The second reason, because of the same fact, is 

that the levels of biomarkers measured in spot-urine – which is the most commonly used approach to 

sampling urine – will vary very much for these chemicals. Therefore, we anticipate that using point 

value for Fue (and read across) as done in the cited studies, introduced some uncertainty on the HI 

values.  

While the first approach is the preferred one because of above mentioned reasons, the latter is done 

in all nearly  cases we found in literature (except the PFAS study from Borg et al. (2013). The use of 

HBM internal guidance values is currently hampered by the limited number of substances from which 

HBM guidance values are available (Apel et al., 2017). 

Also, in case a health based guidance value for external exposure is used, there are often several 

candidate values for use as GV in HQ calculations. E.g. for phthalates, the choice for either the EFSA 

2005 TDIs versus the RfD by A. Kortenkamp & Faust (2010; Andreas Kortenkamp & Koch (2020) has a 

large (up to 5-fold) impact on the HI values (Apel et al., 2020). For other substances (e.g. parabens) 

benchmark (NOEL) in combination with an Uncertainty Factor (e.g. of 100) is used by lack of an official 

health-based threshold value. Also, when using endpoint specific values (e.g. done for PFAS) for 

endpoint specific HI opens the question for the selection of the most appropriate key study and point 

of departure.   
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In conclusion, the outcome of mixtures RA in HBM data is rather sensitive to the choice for GV for 

individual compounds in the mixtures. Harmonization in choice could be welcomed. Also, the use of 

DNEL as instead of regulatory established values such as RfD, TDI, … is not yet assessed. However, this 

would be very relevant in the discussion of the MAF value.  

5.2.4. ACROSS CHEMICAL GROUPS MIXTURE RISK ASSESSMENT  

Nearly all publications deal with mixture risk assessment covering risks of substances within a chemical 

group; hardly any of the publications calculated risks across chemical groups. Several authors point to 

consider further mixtures risk across chemical groups ((Borg et al., 2013; Kortenkamp, 2020)) in order 

not to miss part of the mixture toxicity. However, a ‘blind’ summing (as in screening tool) is not 

recommended for mixture risk assessment on HBM data. To shift forward for across chemical group 

mixture risk assessment forward, further developments should be made for higher tier approaches, 

including gathering detailed toxicological information for grouping, point of departure values for 

relevant endpoints, adverse outcome pathways, and derivation of endpoint specific guidance values 

to enable a higher tier mixture risk assessment.  

5.2.5. ADDITIVITY CONCEPT 

Above mentioned assessments rely on the assumption of the dose additivity concept and does not 

capture for other types of interactions (e.g. synergistic effects). For a practical point of view, it is not 

feasible to consider other types of interactions in regulatory mixture RA approaches; however, one 

should realize that dose additivity might as well underestimate the risk, e.g. in cases of synergism.  

Systematic review analyzed over 700 mixture studies, confirming additive models are a good 

approximation (Martin et al., 2021). However, it should be relegalized that in some cases dose addition 

might underestimate the risk.  A pregnant Swedish mothers pregnancy cohort (the SELMA study) gives 

indications in this direction (Bornehag et al., 2019). A reference mixture of these substances was 

prepared and tested for relevant effects in vitro and in vivo. In a next step they used the Similar 

Mixture ApproaCH (SMACH) to find out how many mothers in the SELMA cohort had a sufficiently 

similar mixture detected and would be considered of concern regarding the exposure of the unborn 

baby. Using this approach, the authors found many more Swedish mothers to be at risk (13 %) 

compared to using only single substance assessments (1.6 %) and also compared to the dose additivity 

approach (3 %) (Bornehag et al., 2019). 
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 CONCLUSIONS AND RECOMMENDATIONS 

The central research question in this report is whether human biomonitoring (HBM) data can inform 

us about the magnitude of a future mixture assessment factor (MAF) that is needed in order to protect 

human health sufficiently regarding risks that go with human exposure to mixtures. In order to 

investigate this, four basic topics were addressed – in a logical order of needed availability and 

complexity - from “HBM mixtures data availability”, “co-occurrence patterns” and “relation between 

HBM exposure biomarker levels and health effects” to “HBM-based mixtures risk assessment”.   

In order to be really useful for mixtures risk assessment, individual HBM data are needed. They are 

however not publicly available due to ethical and data protection requirements. The data owners need 

to be involved and user agreements arranged. This was outside the scope of the current project due 

to time constraints. The HBM part of the project therefore focused completely on aggregated data 

sets available via public platforms and repositories. 

Data sets on human biomonitoring data 

More than one hundred human biomonitoring (HBM) data sets already exist in Europe. Many of them 

are visible and the owners traceable via IPCHEM. The metadata are always visible and for part of the 

data sets also the measurement data can be accessed directly, albeit only in aggregated form (e.g. 

P05, P50 and P95). Because of privacy and data protection issues, for individual data, the data owner 

has to be contacted in all cases to get to a mutual agreement on use of the data, obviously in line with 

the EU General Data Protection Regulation. The studies as described in chapter 3 illustrate that 

‘classical’ targeted screening of chemicals in HBM is likely to result in only a fragmented picture of the 

entire mixture that can be present in human matrices. With further development and wider 

acceptance, suspect and non-targeted screening are expected to become a very useful tools to 

generate mixtures exposure data. The latter techniques have much more potential to generate data 

on the co-occurrence of a much wider set of chemicals and to perform mixtures risk assessment.  

Recommendation: Based on this conclusion, it is recommended to invest significantly into further 

development, quality assurance, quality control, acceptance and use of suspect and non-targeted 

screening in order to generate more data on a wider set of chemicals in human matrices compared to 

the current targeted monitoring campaigns. 

Co-occurrence of chemicals in HBM data 

From the results as presented in chapter 4 it can be concluded that substances within the same 

chemical groups tend to co-occur. Furthermore, due to similar chemical structures and/or 

functionalities, they may very cause similar effects and thus act according to dose-addition. 

Importantly, when performing human health risk assessment on datasets at individual level, there is 

no need to explicitly account for co-occurrence patterns, since this type of information is intrinsically 

taken into account. 
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Recommendation: All in all, it can be cautiously recommended to consider chemical groups as a basis 

for human health risk assessment of mixtures, and to take into account the co-occurrence patterns. 

However, when attempting to use HBM datasets at aggregated level, one should be cautious and avoid 

considering distributions of chemicals as independent. 

Relation HBM levels and health effects 

The studies found on assessment of mixtures found in HBM and health effects demonstrate stronger 

exposure-effect correlations for mixtures compared to single substances in the mixture. Clear 

statistical associations have been found between the levels of mixtures of chemical substances in HBM 

samples and some health effects. These associations were stronger for some combinations of 

substances than for each of the substances on their own.  

Notably, some of the substances found in human bodies (e.g. PCBs) are caused by historical 

contamination. They are still found in human samples due to the persistency and long half-lives. The 

observation that epidemiological studies indicate health effects due to mixtures exposure triggers 

human health regulatory risk assessment to also consider mixtures.   

Recommendation: It is recommended to include mixtures exposures when correlating exposure to 

health outcomes in epidemiological studies. This will provide a better estimate of risks linked to 

chemicals exposure then just doing substance by substance risk assessment. And as legacy chemicals 

in our bodies may contribute as well to mixtures risk of currently marketed chemicals it is 

recommended to include them in assessing overall mixtures risks as long as they are present in human 

matrices. 

Mixtures risk assessment 

Quite some studies have been found in which it was attempted to perform mixture risk assessment. 

However, the approach of many of these studies was different, making it hard to make direct 

comparisons. Also, in many studies the denominator for the HQ calculations to add up to the HI was 

an external guidance value such as the TDI and the measured HBM values were calculated back to 

external exposures. This reverse dosimetry is associated with large uncertainties. 

Recommendation: It is recommended to develop health-based HBM guidance values for many more 

chemicals, even if only preliminary. 

Overall discussion and conclusions 

Regarding the central question at the basis of the work described in the underlying report, i.e. whether 

HBM-based mixture risk assessment outcomes could inform discussions regarding the magnitude for 

a MAF for setting DNELs for individual chemicals under REACH, it is concluded that currently available 

information in the literature is insufficient in amount as well as in quality to address this question 

unequivocally. However, some important findings can be reported to aid the discussions. 

Some studies do provide HI values for a series of substances determined in HBM samples. But the 

approaches used to calculate the denominator in the HQ’s for each individual chemical are typically 

associated with large uncertainties. Often, no health-based HBM guidance values exist and HBM 

exposure biomarker concentrations, assuming steady state exposure and steady state kinetics, are 

calculated back to modelled external exposure (back-extrapolation or reverse dosimetry) using the 

urinary excreted fraction (Fue).   
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Unfortunately, this approach leads to large uncertainties. One important reason is that the Fue is very 

sensitive to fluctuations in the exposure, especially for chemicals with relatively short half-lives. The 

second reason for the uncertainty, is that the levels of biomarkers measured in spot-urine – which is 

the most commonly used approach to sampling urine – will vary very much for these chemicals.   

A second problem encountered is that more or less all mixture risk focused studies include a relatively 

low number of chemicals. This implies a higher odd of finding low MCR values which might lead to the 

conclusion that only one or two chemicals are causing a mixture risk. But if many more chemicals 

would be included in the mixture risk assessment, the chances of finding higher MCR values would 

possibly increase. Which means that, although currently found MCR values tend to be low, it cannot 

yet be concluded definitely that mixture risk in human matrices is mainly determined by a few 

chemicals in the mixture. 

Current studies suggest the following, although insufficient data are available to draw definitive 

conclusions: if a lower tier mixture risk assessment (so no knowledge or consideration of target organs 

or modes of action) of chemical groups of structurally similar chemicals shows HI values clearly above 

1, there is a high probability that the mixture risk is realistic and not worst case because structurally 

similar chemicals quite often exhibit similar target organs toxicity. 

One clear conclusion is though that in order to generate more knowledge to feed into the MAF 

discussion, HBM data on more substances are needed. In this respect, more focus on and more 

commissioning of suspect-screening and non-target screening will probably deliver better quality 

data, i.e. on larger mixtures. 

However, this recommendation should not stop us from using the existing HBM datasets (limited to 

target screening only) for the MAF discussion. Assuming access to individual data sets, one could 

consider calculating, based on available HBM datasets, what MAF value would be sufficiently to 

protect a defined level, e.g. what MAF would be needed to turn HI into HI < 1 for 95th percentile of 

HBM samples in a cohort/data set (see method T. Backhaus used for MAF for environmental mixtures 

exposure and risk). This is probably feasible in a higher tier, albeit clearly access to individual data is 

needed. But it would not make sense at the screening level (where HI considers all chemicals in 

summation, irrespective of chemical similarity or similar mode of action) since it is expected that 

screening level HI would result in a majority of HBM samples at HI > 1. Trying to reduce the HI to levels 

< 1 for 95th percentile with a number of MAF values using screening level data would not be 

recommended given that other options are preferred, i.e. performing higher tier HI calculations 

considering grouping of effects (or mode of action is needed). Scrutinizing MAF values theoretically in 

a higher tier HI approach is recommended. Importantly, in such an exercise, one should pay attention 

to selection of the value in the denominator (DNEL, HBM-GV, external HB-GV).  
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APPENDIX 1: OVERVIEW OF BIOMARKERS OF EXPOSURE TO CHEMICALS MEASURED IN THE EUROPEAN HBM4EU MONITORING DATASETS (TARGET SCREENING) 

substance group parent compound Biomarker (parent compound or metabolite) matrix 

acrylamide acrylamide AAMA (N-acetyl-S-(2-carbamoylethyl)-cysteine) Urine-spot  

acrylamide acrylamide GAMA (N-Acetyl-S-(2-carbamoyl 
-2-hydroxyethyl)-L-cysteine) 

Urine-spot  

analines paracetamol NA4AP (N-acetyl-4-aminophenol, paracetamol)  Urine-spot  

aprotic solvents N-methyl-2-pyrrolidone (NMP)  2-hydroxy-N-ethylsuccinimide  Urine-spot  

aprotic solvents N-methyl-2-pyrrolidone (NMP)  2-hydroxy-N-methylsuccinimide  Urine-spot  

aprotic solvents N-methyl-2-pyrrolidone (NMP)  5-hydroxy- N-methyl-2- pyrrolidone (5-HNMP), Urine-spot  

aprotic solvents N-methyl-2-pyrrolidone (NMP)  5-hydroxy- N-ethyl-2- pyrrolidone (5-HNEP), Urine-spot  

Arsenic arsenic Total arsenic (Tas) Urine-spot  

Arsenic arsenic Toxicologically relevant arsenic Urine-spot  

Arsenic arsenic arsenic acid (As(V)) Urine-spot  

Arsenic arsenic arsenous acid (As(III)) Urine-spot  

Arsenic arsenic monomethylarsonic (MMA) Urine-spot  

Arsenic arsenic dimethylarsinic (DMA) Urine-spot  

Arsenic arsenic arsenobetaine (AsB) Urine-spot  

Arsenic arsenic sum As(III) + As(V) + DMA + MMA Urine-spot  

Bisphenols bisphenol A  BPA total Urine-spot  

Cadmium cadmium  Cd Urine-spot  

Chromium chromium total chromium  Cr Urine-spot  

DINCH dinch cyclohexane-1,2- dicarboxylate-mono- 
(7- hydroxy-4-methyl)octyl ester (OH-MINCH, 
MHNCH) 

Urine-spot  
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substance group parent compound Biomarker (parent compound or metabolite) matrix 

DINCH dinch cyclohexane-1,2- dicarboxylate-mono-(7-oxo- 4-
methyl) octyl ester (oxo- MINCH, MONCH) 

Urine-spot  

Flame retardants  
(brominated diphenyl ethers) 

BDE-28 BDE-28 Blood Serum  

Flame retardants  
(brominated diphenyl ethers) 

BDE-47 BDE-47 Blood Serum  

Flame retardants  
(brominated diphenyl ethers) 

BDE-66 BDE-66 Blood Serum  

Flame retardants  
(brominated diphenyl ethers) 

BDE-99 BDE-99 Blood Serum  

Flame retardants  
(brominated diphenyl ethers) 

BDE-100 BDE-100 Blood Serum  

Flame retardants  
(brominated diphenyl ethers) 

BDE-153 BDE-153 Blood Serum  

Flame retardants  
(brominated diphenyl ethers) 

BDE-154 BDE-154 Blood Serum  

Flame retardants  
(brominated diphenyl ethers) 

BDE-183 BDE-183 Blood Serum  

Flame retardants  
(brominated diphenyl ethers) 

BDE-209 BDE-209 Blood Serum  

Flame retardants  
(brominated) 

HBCDalpha HBCDalpha Blood Serum  

Flame retardants (brominated) HBCDbeta HBCDbeta Blood Serum  

Flame retardants (brominated) HBCD gamma HBCD gamma Blood Serum  

Flame retardants 
(novel brominated flame retardants) 

TBBPA TBBPA Blood Serum  
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substance group parent compound Biomarker (parent compound or metabolite) matrix 

Flame retardants  
(novel brominated flame retardants) 

HBB HBB Blood Serum  

Flame retardants 
(novel brominated flame retardants) 

PBEB PBEB Blood Serum  

Flame retardants 
(novel brominated flame retardants) 

BTBPE BTBPE Blood Serum  

Flame retardants  
(novel brominated flame retardants) 

PBT PBT Blood Serum  

Flame retardants  
(novel brominated flame retardants) 

DBDPE DBDPE Blood Serum  

Flame retardants 
 (novel brominated flame retardants) 

OBIND OBIND Blood Serum  

Flame retardants (organophosphor) triphenyl phosphate (TPHP) Diphenyl phosphate (DPHP) Urine-spot  

Flame retardants (organophosphor) Tris(2-chloroethyl) phosphate (TCEP) Bis(2-chloroethyl) phosphate (BCEP) Urine-spot  

Flame retardants (organophosphor) Tri-n-butyl phosphate (TNBP) Di-n-butyl phosphate (DnBP) Urine-spot  

Flame retardants Syn-dechlorane plus Syn-dechlorane plus Blood Serum  

Flame retardants Anti-dechlorane plus Anti-dechlorane plus Blood Serum  

Flame retardants flame retardants Dec603 (dechlorane 603) Blood Serum  

Flame retardants flame retardants Dec602  (dechlorane 602) Blood Serum  

Flame retardants hexabromocychlododecane  total HBCD Blood Serum  

Lead lead Lead Urine-spot  

Mercury and its organic compounds mercury Mercury  (total) Urine-spot  

Mercury and its organic compounds mercury Mercury  (total) Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFBA PFBA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFPeA PFPeA Blood Serum  



Appendix 1: Overview OF BIOMARKERS of exposure to chemicals measured in the European HBM4EU monitoring datasets (target screening) 

 

43 

substance group parent compound Biomarker (parent compound or metabolite) matrix 

Per-/poly-fluorinated compounds (PFASs) PFHxA PFHxA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFHpA PFHpA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFOA PFOA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFNA PFNA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFDA PFDA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFUnDA PFUnDA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFDoDA PFDoDA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFTrDA PFTrDA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFTeDA PFTeDA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFBS PFBS Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFHxS PFHxS Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFOS PFOS Blood Serum  

Per-/poly-fluorinated compounds (PFASs) PFDS PFDS Blood Serum  

Per-/poly-fluorinated compounds (PFASs) FOSA FOSA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) N-EtFOSA N-EtFOSA Blood Serum  

Per-/poly-fluorinated compounds (PFASs) N-MeFOSA N-MeFOSA Blood Serum  

Pesticides (organophosphorus) chlorpyrifos 3,5,6-trichloro-2-pyridinol  (TCPy); 
 3,5,6-trichloro-2-pyridinol (TCPy) 

Urine-spot  

Pesticides (organophosphorus) chlorpyrifos Diethyl phosphate (DEP) Urine-spot  

Pesticides (organophosphorus) Pesticides (organophosphorus) Diethyl thiophosphate (DETP) Urine-spot  

Pesticides (organophosphorus) Pesticides (organophosphorus) Diethyldithiophosphate (DEDTP) Urine-spot  

Pesticides (organophosphorus) Pesticides (organophosphorus) Dimethyl phosphate (DMP) Urine-spot  

Pesticides (organophosphorus) Pesticides (organophosphorus) Dimethyl thiophosphate (DMTP) Urine-spot  
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substance group parent compound Biomarker (parent compound or metabolite) matrix 

Pesticides (organophosphorus) Pesticides (organophosphorus) Dimethyl dithiophosphate  (DMDTP) Urine-spot  

Pesticides (organophosphorus) Pesticides (organophosphorus) 2,5-dichlorophenol (2,5-DCP) Urine-spot  

Pesticides (organophosphorus) glyphosate glyphosate Urine-spot  

Pesticides (organophosphorus) glyphosate Aminomethylyphosphonic acid  (AMPA) Urine-spot  

Pesticides (pyrethroids) pesticides (pyrethroids) 3-phenoxybenzoic acid  (3-PBA) Urine-spot  

Pesticides (pyrethroids) pesticides (pyrethroids) 4-fluoro-3-phenoxybenzoic acid (F-3-PBA) Urine-spot  

Pesticides (pyrethroids) pesticides (pyrethroids) cis-3-(2,2-dichlorovinyl)-2,2-dimethylcyclo 
propane-1-carboxylic acid   (cis-DCCA) 

Urine-spot  

Pesticides (pyrethroids) pesticides (pyrethroids) trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclo 
propane-1-carboxylic acid   (trans-DCCA) 

Urine-spot  

Pesticides (pyrethroids) pesticides (pyrethroids) cis-3-(2,2-dibromovinyl)-2,2-dimethyl 
cyclopropane-1-carboxylic acid   (cis-DBCA) 

Urine-spot  

Phthalates DEHP Mono(2-ethylhexyl) phthalate (MEHP) Urine-spot  

Phthalates DEHT Mono(2-ethyl-5-hydroxy- hexyl)  
phthalate (5OH- MEHP, MEHHP) 

Urine-spot  

Phthalates DEHT Mono(2-ethyl-5-oxo-hexyl) phthalate  
(5oxo-MEHP, MEOHP) 

Urine-spot  

Phthalates BBzP Mono-benzyl phthalate (MBzP) Urine-spot  

Phthalates DnPB Mono-n-butyl phthalate (MnBP) Urine-spot  

Phthalates DiBP Mono-isobutyl phthalate (MiBP) Urine-spot  

Phthalates DEHP Mono(2-ethyl-5-carboxy- pentyl)  
phthalate (5cx- MEPP, MECPP) 

Urine-spot  

Phthalates DEP Mono-ethyl phthalate (MEP) Urine-spot  

Phthalates DINP Mono-methyl-octyl phthalate (MiNP) Urine-spot  
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substance group parent compound Biomarker (parent compound or metabolite) matrix 

Phthalates DINP 7-OH-(Mono-methyl-octyl) phthalate 
 (OH-MiNP, MHNP, MHiNP) 

Urine-spot  

Phthalates DINP 7-Oxo-(Mono-methyl-octyl) phthalate  
(oxo-MiNP, MONP, MOiNP) 

Urine-spot  

Phthalates DINP 7-Carboxy-(mono-methyl- heptyl) phthalate 
(cx-MiNP, MCOP, MCiOP) 

Urine-spot  

Phthalates DnOP (di-n-octyl phthalate) Mono-n-octyl phthalate (MnOP, MOP) Urine-spot  

Phthalates DIDP Mono-propyl-heptyl phthalate (MiDP) Urine-spot  

Phthalates DnPeP Mono-n-pentyl phthalate (MnPeP) Urine-spot  

Phthalates DCHP (di-cyclo-hexyl phtalate) Mono-cyclo-hexyl phthalate (MCHP) Urine-spot  

Phthalates DnBP 3-OH-Mono-n-butyl phthalate (OH-MnBP) Urine-spot  

Phthalates DiBP 2-OH-Mono-iso- butylphthalate (OH-MiBP) Urine-spot  

Phthalates DiDP 6-OH-Mono-propyl-heptyl phthalate (OH-MiDP) Urine-spot  

Phthalates DiDP 6-Oxo-Mono-propyl-heptyl phthalate (oxo-MiDP) Urine-spot  

Phthalates DMP Mono-methyl phthalate (MMP) Urine-spot  

Polycyclic Aromatic Hydrocarbons (PAHs) pyrene 1-hydroxypyrene (1-PYR) Urine-spot  

Polycyclic Aromatic Hydrocarbons (PAHs) phenanthrene 1-hydroxyphenanthrene Urine-spot  

Polycyclic Aromatic Hydrocarbons (PAHs) phenanthrene 2- hydroxyphenanthrene Urine-spot  

Polycyclic Aromatic Hydrocarbons (PAHs) phenanthrene 3- hydroxyphenanthrene Urine-spot  

Polycyclic Aromatic Hydrocarbons (PAHs) phenanthrene 4- hydroxyphenanthrene Urine-spot  

UV-filters (benzophenones) Benzophenone 1 (BP-1) Benzophenone 1 (BP-1) Blood Serum  

UV-filters (benzophenones) Benzophenone 2  (BP-2) Benzophenone 2  (BP-2) Blood Serum  

UV-filters (benzophenones) Benzophenone 3 (BP-3) Benzophenone 3 (BP-3) Blood Serum  

UV-filters (benzophenones) 5-chloro-2-hydroxybenzophenone  (BP-7) 5-cholro-2-hydroxybenzophenone  (BP-7) Blood Serum  
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substance group parent compound Biomarker (parent compound or metabolite) matrix 

UV-filters (benzophenones) 4-hydroxy-benzophenone (4-HBP) 4-hydroxy-benzophenone (4-HBP) Blood Serum  

UV-filters (benzophenones) 4-methyl-benzophenone (4-MBP) 4-methyl-benzophenone (4-MBP) Blood Serum  

UV-filters (benzophenones) Benzophenone (BP) Benzophenone (BP) Urine-spot  

UV-filters (benzophenones) Benzophenone 1 (BP-1) Benzophenone 1 (BP-1) Urine-spot  

UV-filters (benzophenones) Benzophenone 2  (BP-2) Benzophenone 2  (BP-2) Urine-spot  

UV-filters (benzophenones) Benzophenone 3 (BP-3) Benzophenone 3 (BP-3) Urine-spot  

UV-filters (benzophenones) 5-chloro-2-hydroxybenzophenone (BP-7) 5-chloro-2-hydroxybenzophenone  (BP-7) Urine-spot  

UV-filters (benzophenones) 4-hydroxy-benzophenone (4-HBP) 4-hydroxy-benzophenone (4-HBP) Urine-spot  

UV-filters (benzophenones) 4-methyl-benzophenone (4-MBP) 4-methyl-benzophenone (4-MBP) Urine-spot  
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APPENDIX 2: SUMMARY OF DETECTION FREQUENCIES OF CHEMICALS IN HUMAN BIOMONITORING STUDIES (DATA RETRIEVED FROM HTTPS://WWW.HBM4EU.EU/EU-HBM-
DASHBOARD/) 

Chemical group datasets biomarker Matrix Levels of biomarkers in relation to LOQ/LOD * 

Acrylamide GerES V (2015-2017); AAMA; GAMA urine P5> LOQ*  

Anilines and MOCA  Democophes DK NA4AP urine P5> LOQ 

Aprotic solvents ESB 2008-2014; GerES V 2-HESI; 2-HMSI; 5-HNEP urine 2-HMSI: P5> LOQ; 
2HESI: P25 > LOQ;  
5-HNEP: detected from P75 or above  
5-HNMP: P10 > LOQ  

Arsenic GerES IV; FLEHS II, ESB, 3xG; 
SLO-HBM-I 

As total urine P5 > LOQ in FLEHS II; P25 > LOQ > in ESB 

 Moba; FLEHS 2, SLO-HBM-I; 
FLEHS 3  

As total blood P5 > LOD 

 SLO-HBM-I As total Breast 
milk 

P5 > LOD 

Bisphenols  Several  BPA total;  

PBS total 

urine BPA: In several datasets: P5 > LOQ; in some P10/P25 > LOQ  
BPS: detected in some studies (DK; P50 > LOQ); while less in 
e.g. NO IES Mother: P90 > LOQ  

Cadmium several Cd  urine In majority of datasets; P5 > LOQ; in a few datasets LOQ ~ P10, 
P25, P50  

Cadmium several cadmium blood In majority of datasets; P5 > LOQ; in a few datasets LOQ ~ P10, 
P25, P50 (especially in database with rather high LOD or LOQ) 

 SLO-HBM-I; PRENATAL mother cadmium breastmilk In PRENATAL mother: P5 > LOD 
In SLO-HBM-I: P75 > LOD (LOD is 2.5 x higher than in 
PRENATAL study) 

Chromium FLEHS II, III and 3xG Cr total urine In FLEHS 2: P5 > LOD; in FLEHS 3 and 3xG: P50 < LOD; mind 
different LOD between FLEHS 2 & 3  
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Chemical group datasets biomarker Matrix Levels of biomarkers in relation to LOQ/LOD * 

Chromium FLEHS II, III and 3xG Cr total blood In FLEHS 2 and 3: P5 > LOD; 3xG: P25 > LOD;  

DINCH  several xc-MINCH, OH-MINCH; oxo-
MINCH 

urine In some datasets: P5 > LOQ  
On other datasets: LOQ  ~ P25/P75  

OP flame retardants NO IES, AT Orphos; GerES V  BCEP, NdPB, PDHP, BBOEP, 
BDCIPP 

urine 20 fold difference in LOQ between studies (e.g BCEP); 
From P5 > LOQ (GerES V DPHP) to LOQ ~ P50 or above  

BDEs  several BDE 28, BDE47, BDE 99, BDE 100, 
BDE 153, BDE 154, BDE 183, 
BDE209  

Blood In several databases: several BODs not detected (P90 > LOQ); 
in other datbases some BDEs, e.g BDE 153: P5 > LOQ 

Lead several Lead Urine P5 > LOQ/LOD in all databases 

Lead SLO-HBM-I Lead Breast 
milk 

P75 > LOD 

Mercury several Hg total blood In majority of databases: P5, P10 or P25 > LOQ 

Mercury several Hg total urine In majority of databases: P5 > LOQ; in some P25 > LOQ  

Mercury SLO-HBM-I Hg total Breast 
milk 

P5 > LOD 

PFAS  several Several PFAS: FOSA, PFBA, PFBS, 
PFDA, PFDoDA, PFHpA, 
PFHxA,PFHxS,  PFNA, PFOA, 
PFOS PFUnDA 

blood Diversity among studies and PFAS; e.f. PFOS and PFAS; P5 > 
LOQ in all reported studies; other PFAS: more diversity (also 
due to range in LODs across studies); general findings: a lot of 
PFAS detected at least above P50 if LOQ is sufficiently low  

PFAS  PCBCohort_mother (SK); 
Prenatal mother (SK); 
CzechHBM-HM 2014 & 2017 

Several PFAS: FOSA, PFBA, PFBS, 
PFDA, PFDoDA, PFHpA, 
PFHxA,PFHxS,  PFNA, PFOA, 
PFOS PFUnDA 

Breast 
milk 

PFOS and PFAS; P5 > LOQ in all reported studies; other PFAS: 
in general below LOQ,: except PFNA (P5 > LOD in CzechHBM-
HM  2017) 

Pesticides 
(organophosphate) 

several AMPA, glyphosate, DEP, DETP, 
DMP, DMTP, DMDTP, etc.  

urine For majority of pesticides biomarkers in majority of databases: 
P5/P10  > LOQ, with some exceptions (e.g. DEDTP, DETP 
detected less frequently in e.G. FLEHS 2: DK); here also 
differences in LOD/LOQ explain partly differences   
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Chemical group datasets biomarker Matrix Levels of biomarkers in relation to LOQ/LOD * 

Pesticides 
(pyrethroids) 

GerES IV, KD Doense Child 
Cohorte; FLESH III Adults 

3-PBA; cis DDCA, trans-DDCA, F-
3-PBA 

urine 3-PBA: P5 > LOQ; cis DCCA and trans DDCA: LOQ ~ P25-P50 in 
dataset with low LOQ; while LOQ > P75 in datasets with 
higher LOQ ; 
F-3-PBA: LOQ ~ P90 or above  

Phthalates  >30 datasets From 7 to > 20 phthalates 
(depending on database) 

urine Despite the large number of datasets and number of 
metabolites: for nearly all metabolites and databases: P5 > 
LOQ (except for MnOP, MnPEP and MCHP; measured in some 
datasets at only at levels P95~ LOQ )  

PAHs Several datasets Several metolites of pyrene, 
phenanthrene, naphthalene and 
flourene 

urine For nearly all datasets and biomarkers: P5 > LOQ; some 
exceptions (e.g. FLEHS 1: 1 PYR; P50 ~ LOD, probably because 
high LOD) 

Benzophenones (UV 
filters) 

Several datasets BP-1; BP-3, BMHB urine In general: less frequent detected; Diverse pattern: in some 
datasets; LOQ  > P90 while in others a rather high detection 
frequency  e.g. in Copenhagen puberty study P25 > LOQ for 
BP-1, BP-3  
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APPENDIX 3: LITERATURE STUDY ON CO-OCCURRENCE PATTERNS IN HBM DATASETS AND RELATION BETWEEN 

MIXTURES EXPOSURE AND HEALTH OUTCOMES   

See next page 
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 INTRODUCTION 

Throughout the life-time, humans are exposed to a mixture of environmental stressors and chemicals 

that independently or in interaction may have an impact on health. These mixtures of exposure can 

form an almost infinite number of different combinations of chemicals, which makes the exposure 

and risk assessment extremely challenging. Chemical risk assessment typically evaluates single 

compounds but generally does not appropriately reflect the complexity of concomitant exposure to 

multiple chemicals in real life. In addition, little is known regarding commonly occurring exposure 

mixtures and how these mixtures change between important covariates such as gender, time or 

country [1]. To date, a few exceptions of studies consider simultaneously more than a couple of 

chemical groups thereby focusing on 1) co-occurrence patterns, and 2) linkage between mixture 

patterns and health outcomes such as birth weight, as described in the following sections [2, 3]. 

However, the available information is still scarce. 

New studies are beginning to jointly assess the effects of chemical mixtures in addition to evaluating 

the impact of exposure to individual chemicals on human health. Biomarkers of exposure in human 

biomonitoring studies are typically considered one of the best measures to characterize the total 

amount of a chemical absorbed via multiple routes. These data can be used to screen for the 

presence of clusters of correlated exposure. Most investigations are limited to either individual 

biomarkers or multiple biomarkers within the same chemical class [4]. Many chemical analytes 

within the same usage or chemical class are densely correlated [5, 6] and the extent to which humans 

are exposed to multiple chemicals and how these biomarkers of exposure correlate with each other 

is an active area of research.  

Patterns between multiple biomarkers are not commonly presented. Increasingly, graphical 

representation of (partial) correlation patterns such as heatmaps, correlation globes or circos plots 

are being used to demonstrate correlations between variables 1. On the other hand, comparative 

network analysis (CNA) provide a graphical method to represent groups or communities in the data. 

Principal Component Analysis (PCA) is an approach to quantify correlations between measured 

biomarkers of exposure [5, 7, 8]. 

The field of statistical tools to explore the association of multiple chemical exposures on health 

outcomes has evolved in recent years. Several methods have been developed, which can be classified 

into three groups according to Govarts et al. 2020 [2]: dimension reduction (e.g. PCR, partial least 

square regression ), variable selection (e.g. deletion/substitution/addition algorithm, penalized 

methods like elastic net (ENET) regression modelling, and Bayesian variable selection methods) and 

                                                           

1https://www.hbm4eu.eu/work-packages/deliverable-15-3-report-real-life-exposure-profiles-from-re-
analysis-of-existing-hbm-mixture-data/ 
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grouping of observations (e.g. cluster analysis, building groups based on an exposure score, Bayesian 

profile regression, recursive partitioning techniques) [9].  

Despite the large number of humane biomonitoring (HBM) studies, analysis of mixtures in HBM 

seems to be a rather unexplored field. The objective of this report is to provide an overview including 

concise summaries of publications and ongoing studies investigating the mixtures patterns and 

potential mixtures effects in HBM studies. We will mainly focus on scientific publications describing 

co-occurrence patterns of chemicals in human biomonitoring datasets. We also extend the search to 

publications describing chemical co-occurrence patterns in relation with health outcomes (several of 

these publications deal with birth length and weight). We focus thereby first on European HBM 

studies. However, studies from outside EU have also been considered because they may report other 

techniques and groups of substances. However, one should be careful to extrapolate the results as 

such to the EU situation.  
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 SEARCH STRATEGY 

2.1. SCOPE OF SEARCH STRATEGY 

The objective of this report is to provide an overview including concise summaries of publications 
and ongoing studies investigating the mixtures patterns and potential mixtures effects in HBM 
studies. We will mainly focus on scientific publications describing co-occurrence patterns of 
chemicals in human biomonitoring datasets. We also extend the search to publications describing 
chemical co-occurrence patterns in relation with health outcomes (several of these publications deal 
with birth length and weight). We focus thereby first on European HBM studies. However, studies 
from outside EU have also been considered because they may report other techniques and groups 
of substances.  
 

2.2. SNOWBALL METHOD 

First, relevant publications such as Govarts et al. 2020 [2], Ottenbros 2021 [1], Rosovsky et al. 2017 

[4] and Tamayo-Uria et al. 2019 [10] were screened for relevant references also investigating 

mixtures patterns and potential mixtures effects in HBM studies, the so-called snowball method. We 

mainly focused on scientific publications describing co-occurrence patterns of chemicals in human 

biomonitoring datasets. Next, we extended the search to publications describing chemical co-

occurrence patterns in relation with health outcomes.  

 

2.3. KEY WORDS IN PUBMED AND WEB OF SCIENCE 

The following key words were used in the search for applicable studies on Pubmed and Web of 

Science: “human biomonitoring and mixtures”, “human biomonitoring and mixture effects”, “human 

biomonitoring and co-occurrence”, “exposure to multiple pollutants”, “exposure to mixture of 

chemicals”, “principal component analysis mixture of chemicals” and “principal component analysis 

chemical mixtures”. For each publication, the cohort name, number of participants, number of 

chemicals, mixtures patterns, the methods used to investigate these mixtures and potential mixtures 

effects in HBM studies will be summarized. 
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 RESULTS 

3.1. RESULT OF SEARCH STRATEGY 

The snowball method yielded all scientific publications describing co-occurrence patterns of 

chemicals in human biomonitoring datasets described in detail in the sections below and most of the 

publications describing chemical co-occurrence patterns in relation with health outcomes. For the 

sake of completeness, Pubmed and Web of Science were searched with the key words defined before 

in chapter 2 and this method yielded the following results: human biomonitoring AND mixtures; 926 

results in Pubmed and 225 results in Web of Science, humane biomonitoring AND mixture effects; 

540 results in Pubmed and 101 results in Web of Science, humane biomonitoring AND co-occurrence; 

29 results in Pubmed and 6 results in Web of Science, exposure to multiple pollutants; 7978 results 

in Pubmed and 2695 results in Web of Science, exposure to mixture of chemicals; 7197 results in 

Pubmed and 6540 results in Web of Science, principal component analysis mixture of chemicals; 565 

results in Pubmed and 883 results in Web of Science and principal component analysis chemical 

mixtures; 565 results in Pubmed and 883 results in Web of Science. These search results were first 

screened for relevant titles after which the abstract was read to determine if the particular 

publication was suitable for inclusion in this report. Only a few relevant publications describing 

chemical co-occurrence patterns in relation with health outcomes [11-15] were found using this key 

word search method. 

3.2. OVERVIEW OF STATISTICAL METHODS USED IN STUDIES INVESTIGATING EXPOSURE PATTERNS OR CO-
OCCURRENCE  

This section provides an overview of statistical methods that are frequently used to investigate 

exposure patterns or co-occurrence in scientific literature. 

3.2.1. LINEAR REGRESSION: PEARSON CORRELATION, HEAT MAPS AND CIRCOS PLOTS 

Linear regression a linear approach to modelling the relationship between a response and one or 

more explanatory variables. The main limitation of this approach is that it does not consider the 

association with other exposures [16]. 

→ Multiple linear regression model (MLR) 

Ordinary linear regression was applied as most conventional model to estimate exposure-effect 

associations, by including all exposure biomarkers in a single multiple linear regression model. 

Statistical significance of the association between the exposure markers and birth weight was 

assessed by the p-value [2]. 
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→ Model selection and Bayesian model averaging using the Bayesian information Criterion (BIC)  

Model selection among a finite set of models can be performed by comparing BICs, but only when 

the number of candidate predictors/exposures is not too high, because it requires evaluation of 

model fit for all (competing/different) regression models. Statistical inference based on estimated 

regression coefficients and 95% confidence intervals from the selected “best” or “median 

probability” models is flawed, because it does not consider the selection process. Although BIC is 

often used to select only a single “best-fitting” model, it can also be used more comprehensively to 

evaluate model uncertainty by using BIC to approximate Bayesian posterior model probabilities. By 

summing the posterior probabilities of all models in which a biomarker occurs, it is possible to 

estimate the so-called marginal posterior probability of inclusion (MPPI) for each exposure 

biomarker. Either a model that includes only exposures with a MPPI exceeding a certain threshold 

(for instance 50%; the so-called median probability model) can be included or base our inference on 

the full range of models as in (Bayesian) model averaging. In Bayesian model averaging (BMA, MPPIs 

are used as weights to estimate a full posterior distribution for each regression coefficient, which 

can be summarized using 95% (Bayesian) credible intervals (95% BCI) [2].  

→ Penalized regression 

Penalized regression methods were developed to address the problems of multicollinearity and high 

dimensionality. In MLR, regression coefficients are estimated by minimizing the residual sum of 

squares (i.e. maximizing model fit), while in penalized regression models’ coefficients are estimated 

by jointly minimizing the residual sum of squares and a function of the estimated coefficients. For 

the well-known LASSO penalty that function is the absolute value of the coefficients, and it can be 

shown that this leads to effective variable selection because some of the coefficients are shrunken 

to exactly zero thereby effectively removing the variable from the model [2]. 

→ Bayesian Adaptive Sampling (BAS) 

BAS is a Bayesian model averaging technique that can use either sampling or enumeration to explore 

different model structures. Like for BIC-BMA, a threshold of 50% for the MPPIs could be used to 

select exposures or we could base our inference on the full range of models [2].  

3.2.2. PRINCIPAL COMPONENT ANALYSIS 

Principal Component Analysis (PCA) is an approach to quantify correlations between measured 

biomarkers of exposure [5, 7, 8]. PCA reduces a large number of correlated variables to a smaller 

number of uncorrelated components while retaining as much information as possible of the original 

variables [16].  

According to Rosofsky et al. 2017 [4]: “ PCA identifies the maximum amount of mutual correlation 

between groups of variables that explain latent variables, or components, that cannot be directly 

observed [17]. Biomarkers are categorized under a given component based on their “loading,” which 

represents correlations between the biomarker and the underlying, latent factor, or component. 
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Because the components are orthogonal, or statistically independent, biomarkers loaded within one 

component are said to have a low correlation with biomarkers loaded on all other components. The 

extent to which chemicals load to the final components may indicate common exposure sources 

within that component, such as chemicals that are found together in diet, consumer products or 

traffic pollution. PCA results may identify the extent to which chemical exposures share common 

sources and pathways or jointly contribute to disease” [4].  

By the technique of principal component analysis (PCA), these principal components are created to 

explain the observed variability in the predictor variables. PCs represent variation in the original data 

set; the first PC represents the maximum amount of variation possible in one dimension, the second 

PC represents the maximum amount of the remaining variation in one dimension perpendicular to 

the first PC, and so on for all remaining PCs [18]. The resulting principal components can also be 

linked to health outcomes by the same multiple linear regression models as described for single 

pollutant models.  

3.2.3. COMPARATIVE NETWORK ANALYSIS 

Comparative network analysis (CNA) provide a graphical method to represent groups or communities 

in the data. Networks facilitates the detection of exposure patterns and allows for the systematic 

comparison of observed exposure patterns between datasets and strata within datasets. Networks 

can be compared on their similarities or their dissimilarities. Ottenbros et al. 2021 focused on exact 

graph matching, which involves the exact correspondence between two or more graphs with the 

exact same set of nodes. An edge is “conserved” if it is present in all of the input graphs. The 

complement of conserved edges is represented in a network graph (network of conserved edges). 

Comparative network analysis can also assess the presence of edges in network B which are not 

present in network A. These results can be interpreted as “additional” or different edges and are 

presented in a network graph as well (network of differential edges). 

3.3. OVERVIEW OF STATISTICAL METHODS USED IN STUDIES DESCRIBING CHEMICAL CO-OCCURRENCE PATTERNS IN 

RELATION WITH HEALTH OUTCOMES 

This section provides an overview of statistical methods that are frequently used to investigate 

chemical co-occurrence patterns in relation with health outcomes in scientific literature. 

3.3.1. ELASTIC NET REGRESSION  

ENET determines which exposures are independently associated with the outcome and overcomes 

the limitations of multivariable linear regression models such as; the production of unreliable 

parameter estimates in case of multicollinearity or the prevention of exploration of datasets with 

too large number of dimensions. ENET results in a balanced approach that makes it possible to select 

the strongest predictors, while enabling collinear predictors to be included in the model [19]. ENET 

is a penalized regression model relying on a weighted mixture of the least absolute shrinkage and 

selection operator (LASSO) and ridge penalties. The LASSO penalty allows variable selection through 

shrinkage. The lowest regression coefficients, corresponding to the least informative predictors, are 
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attributed a zero value and only the most informative predictors are retained by the model. The ridge 

penalty accommodates correlated exposures and shrinks regression coefficients from corelated 

predictors proportionally toward zero [20]. 

3.3.2. BAYESIAN KERNAL MACHINE REGRESSION (BKMR) 

BKMR utilizes a non-parametric approach to evaluate dose-response relationships, allowing for 

possible non-linearity and interactions in exposure outcome associations, which can often occur in 

the context of endocrine disrupting chemicals [16]. This approach allows for the examination of 

independent effects of mixture members, interactions among them, and the overall mixture effect 

[14]. Unlike WQS, BKMR allows the user to visualize individual exposure–response functions, while 

accounting for the other exposures and allowing potential non-linear relationships and/or 

differential directions of effect among exposures [21]. 

3.3.3. WEIGHTED QUANTILE SUM REGRESSION (WQS) 

WQS regression allows for the creation of a weighted linear index of correlated predictors that are 

weighted by their strength of association with the outcome of interest [14]. WQS regression assumes 

linear exposure-outcome associations across quantiles of each exposure and is a first-order 

approximation of non-additivity. Additionally, WQS regression focuses inference in a single direction 

at a time with constrained optimization of the beta parameter. Effects can be estimated for both 

directions individually by conducting separate analyses constraining the analyses in positive and 

negative directions [21]. 
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3.4. DESCRIPTION OF RESULTS  

In this chapter, we will provide a concise overview and summary of publications and ongoing studies investigating the mixtures patterns and potential 

mixtures effects in HBM studies. The main European and non-European studies are summarized respectively in Table 1 and Table 2 and are also explained 

in detail in the following text sections.  

Table 1: Overview of publications investigating the mixtures patterns and potential mixtures effects in European HBM studies. 
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Sub cohort of HELIX 
(6 EU birth cohorts: 
BiB, EDEN, INMA, 
KANC, MoBA and 
Rhea) 

1301 Mother-child pairs 87 for the 
pregnancy 
period 
122 for the 
childhood 
period 

Organochlorine 
compounds 
PBDEs 
PFAS 
Metals and elements 
Phthalate metabolites 
Phenols 
Organophosphate 
pesticide metabolites 
Cotinine 

Serum, 
plasma, blood 
or urine 

/ 1) Within correlations 
with PEARS, polychoric or 
polyserial correlations 
 
2) PCA 

Exposure 
patterns/co-
occurrence 

1) Overall correlations tended to be higher 
than within correlations and the median 
correlation within exposure groups 
was>0.3 for many exposure groups 
 
2) Ten principal components explained 
45% and 39% of the total variance in the 
pregnancy and childhood exposome, 
respectively, while 65 and 90 components 
were required to explain 95% of the 
exposome variability 

 Some of the high correlations may be due 
to exposures being measured using a 
common methodology (e.g. GIS variables) 
or a common biological medium (e.g. 
variables measured in urine) or because 
some variables were used to create others. 

Tamayo-Uria 
et al. 2019 
[10] 

Snart Foraeldre/ 
Milieu 
Denmark  

73 
 

Danish women (18-
40 years) from the 
general population 
who stopped using 
contraception 
because they 
wished to become 
pregnant 
 

135 Cotinine 
Metals 
Arsenic metabolites 
PAH 
BFRs 
Herbicides 
Insecticides 
PCBs 
Persistent Pesticides 
Perchlorate 
Phenols 
Parabens 
Phthalates 
Phytoestrogens 
PFAS 
Dialkylphosphate 
metabolites 
DEET metabolites 

Blood, 
Serum or 
Urine 

Analysis 
restricted to 
biomarkers that 
were detected 
in 75% of the 
study 
population 

PCA, 3 models created: 
1) All markers combined 
2) Urinary markers only 
3) Serum and whole 
blood markers only 

Exposure 
patterns/co-
occurrence 

Model 1, component 1:  
- Persistent pesticides, PCBs, total mercury 
Model 1, component 2: 
- Blood and urinary metals, PFAS, cotinine, 
PAHs, perchlorate, phthalate, parabens 
Model 1, component 3:  
- PFAS, PCB28 PBDE153, PAHs, urinary 
metals, phthalates, pesticides 
Model 2, component 1:  
- PAHs, mono-ethyl phthalate, parabens, 
phytoestrogen, lead 
Model 2, component 2: 
- Blood and urinary metals, Arsenic and 
metabolites, phthalates, pesticides, 
strontium 
Model 3, component 1:  
- Blood metals, persistent pesticides, PCBs, 
PBDE153 
Model3, component 2: 

Urinary metals and 
phytoestrogens 

- Mono-ethyl phthalate and parabens:  
used in cosmetic product and food 
packaging. 
- PAHs and perchlorate: released by 
combustion processes. 
- PFAS:  
high intra-class correlations due to 
exposure to other PFAS biomarkers 
- Cotinine and cadmium: smoking status 
- Mercury and PCBs:  
living in urban area and consumption of 
saltwater fish 
- Urinary metals and phytoestrogens:  
low correlation due to different sources  
 

Rosofsky et 
al. 2017 [4] 
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- PFAS, blood metals, cotinine, PCB28 

4 Flemish birth 
cohort: 
FLEHS I, II & III and 
3XG 
(Belgium) 

1579 Flemish mother-
newborn pairs, 
population was 
restricted to live-
born singleton 
births.  
Outcome of 
interest was birth 
weight. 

7 PCB-138 
PCB-153 
PCB-180 
Hexachlorobenzene 
p,p’-DDE 
Cadmium 
Lead 

Cord blood 1.1–27% 
depending on 
the compound 

- Pearson correlation for 
correlations between the 
different pollutants 
 
 
- Correlation with birth 
weight using 
5 linear regression-based 
statistical methods: 
1) Multiple linear 
regression (MLR) 
2) Bayesian Information 
Criterion (BIC) 
3) BIC Bayesian model 
averaging (BIC-BMA) 
4) Penalized regression 
using concave penalty 
(MCP) 
5) Bayesian Adaptive 
Sampling (BAS) 

Exposure 
patterns/co-
occurrence 

- PCB congeners 138, 153 and 180 were 
highly correlated (Pearson’s r = 0.75-0.83) 
 
 
 
- PCB 153 and PCB 180 showed an inverse 
association with birth weight in all 
multipollutant models while p,p’-DDE 
levels were associated with an increasing 
birth weight 
 
 

Correlations between 
different pollutants were 
low to moderate (Pearson’s 
r = 0.12-0.58) 

PCB congeners are estrogens and DDE 
inhibits androgens and both disrupt 
thyroid function. 
Estrogens and androgens play important 
roles in regulating nutrient delivery to the 
fetus and organ maturation, hence, PCB’s 
and DDE can disrupt fetal development by 
their endocrine-disrupting characteristics 
there explaining the association with birth 
weight. 

Govarts et al. 
2020 [2] 

3 Flemish birth 
cohort: 
FLEHS I, II & III 
(Belgium) 

281 Flemish mother-
newborn pairs 

19 Organochlorine 
compounds 
PFAS 
Metals  

Cord blood 60% of the 
measurements 
above LOD 

Comparative network 
analysis (CNA): 
A node in the network 
represents a biomarker, 
and an edge reflects 
conditional dependency 
given all other variables 

Exposure 
patterns/co-
occurrence 

/ / / Ottenbros et 
al. 2021 

INMA, Sabadell 
Spain 

728 Pregnant women 81 Organochlorines 
PFAS 
 
Mercury 
 
PBDEs 
 
Metals 
Phthalates 
BPA 
Cotinine 

Serum 
 
 
Cord blood 
 
Breast milk 
 
Urine 

If analyte was 
nondetectable 
in > 85% of 
samples, 
biomarkers was 
excluded 

Pair-wise Pearson’s 
correlations 
and polychoric 
correlations  
were calculated to 
produce a correlation 
matrix.  
Heat 
map and circos plots 
were made to display the 
correlations. 
Principal components 
were then derived 
directly from the 
correlations. 

Exposure 
patterns/co-
occurrence 

The mean correlation (r) all exposures was 
0.08 (median = 0.02; 5-95th centiles = -
0.12-0.54). 
  
The four PFOA compounds had the 
strongest median absolute correlation (r = 
0.62) of the individually measured 
biomarkers. 
 
Overall, the median of all between-family 
absolute correlations was 0.05 (5th−95th 
centiles, 0.01−0.23). 

The other biomarker 
families, PDBEs, phthalates, 
metals, and 
organochlorines, had all 
median absolute 
correlations below 0.5, 
reflecting their more 
diverse sources.  
 

/ Robinson et 
al. 2015 [5] 

Flemish birth cohort 
FLEHS II 
(Belgium) 

248 Flemish mother-
newborn pairs 

15 Lead 
Manganese 
Copper 
Thallium 
Arsenic 
 
Cadmium 
 
 
PCB-138 
PCB-153 
PCB-180 
P,p’-DDE 
PFOS 

Cord blood 
 
 
 
 
 
Maternal 
whole blood 
 
Plasma cord  
 
 
 
 

0-21% of n < 
LOD/LOQ 

1) PCA 
 
 
 
 
 
 
 
2) Algorithm for mixture 
effects 

Mixture 
exposure-
health 
effects 

Subset PCA: a significant negative 
association with birth weight was found 
for arsenic and cadmium (p = 0.009). 
 
 
 
 
The mixtures with the highest association 
with birth weight were composed of five 
chemicals, i.e., PFOA, lead, cadmium, 
arsenic, and MECPP (p = 0.0019) and 
cadmium, thallium, arsenic, MECPP, and 
methylmercury (p = 0.0021). 
 

Whole PCA: none of the 
principal components were 
statistically significant (p < 
0.05) associated with birth 
weight. 

/ Govarts et al. 
2016 [18] 
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POFA 
MECPP 
 
Total mercury 
Methylmercury 

 
 
 
Maternal hair  

 
 
 
 

INMA, Sabadell 
Spain 

657 Mother-child (7 
years of age) pairs 

27 BPA 
Phthalates 
Metals (arsenic, lead 
and cadmium) 
 
Organochlorine 
pesticides 
 
PCBs 
Total mercury 
 
PBDEs 

Urine 
 
 
 
 
Maternal 
blood 
 
Cord blood 
 
 
Maternal 
colostrum 

n samples < 
LOD varies 
between 0 and 
100 

PCA Mixture 
exposure-
health 
effects 

A factor reflecting combined exposure to 
multiple phthalate metabolites showed 
weak evidence for an association with 
reduced BMI. 

Exposure to other EDCs in 
combined multi-pollutant 
analyses, showed no 
evidence for an association 
with child weight status. 
 

/ Agay-Shay et 
al. 2015 [22] 

EDEN birth cohort, 
France 

473 Mother-son pairs 20 9 phenols: 
4 parabens, 2 
dichlorophenols, 
Triclosan, 
benzophenone-3 and 
BPA 
11 phthalate 
metabolites 

Urine  All analytes 
were between 
98-100% > LOD 

Elastic Net (ENET)-
penalized regression 
models 

Mixture 
exposure-
health 
effects 

- Triclosan and MNCP were negatively 
associated with placental weight while 
benzophenone-3 and the sum of parabens 
were positively associated with placental 
weight.  
- Only benzophenone-3 was associated 
with birth weight 
- MNCP and MNOP were negatively 
associated with placental-to-birth weight 
ratio. 

 The fact that the direction of the 
associations with placental weight differed 
across biomarkers might indicate different 
mechanisms of action. 

Philippat et 
al. 2018 [20] 

ELFE nationwide 
birth cohort, France 

311 Women who gave 
birth to liveborn 
singleton ≥ 33 
weeks of gestation 

64 Organochlorines 
Organophosphorus 
Pyrethroids 
Carbamates 
Dinitroanilines 
Thiocarbamates 
Phenylpyrazoles 
Acid herbicides 
Azoles 
Oxadiazines 
Trizines/triazones 
Amide pesticides 
Strobilurins 
Carboxamides 
Urea 
Neonicotinoids 
Anilino-pyrimidines 

Maternal hair 28 of 64 
pesticides and 
metabolites 
were detected 
in > 70% of 
samples, 
10 were 
detected in 50-
70% of the 
samples, 
10 were 
detected > 50% 
of the samples 

Elastic Net (ENET)-
penalized regression 
models 

Mixture 
exposure-
health 
effects 

Significant associations were observed 

between; 

- weight and fipronil sulfone 

- length and TCPy, bitertanol, DEP, and 

isoproturon 

- head circumference and tebuconazole 

and prochloraz  

/ / Béranger et 
al. 2019 [19] 

Three birth cohorts:  
Greenland, Poland 
and Ukraine 

1250 Mother-infant pairs 16 Secondary metabolites 
of DEHP and DiNP, 
PFASs 
organochlorines 

Maternal 
serum 

All 16 
biomarkers 
were 
quantifiable in 
at least 72% of 
serum samples 

ENET Mixture 
exposure-
health 
effects 

Two phthalate metabolites (MEHHP, 
MOiNP), perfluorooctanoic acid (PFOA), 
and p,p´-DDE were most consistently 
predictive of term birth weight based on 
elastic net penalty regression. 

/ - Oxidative stress 
- Modulation of sex and thyroid 
homeostasis 
- Interference with lipid metabolism by 
PFASs 
- BPA and phthalates were associated with 
perturbations of angiogenesis 

Lenters et al. 
2016 [3] 

Avon Longitudinal 
Study of Parents 
and Children 
(ASLPAC), UK 

448 Mother-female 
child pairs 

52 8 PFAS 
35 PCBs 
9 organochlorine 
pesticides 

Maternal 
serum 

EDCs detected 
in greater than 
75% of mothers 
were included 
in the main 
analyses. 

1) BKMR 
2) WQS 

Mixture 
exposure-
health 
effects 

/ 1) Weighted quantile sum 
regression models showed 
null associations between 
the indices for mixtures 
(PFAS, PCBs, OCPs, and all 
three classes combined) 
and early menarche. 

/ Marks et al. 
2021 [14] 
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2) In the BKMR model for 
all three classes combined, 
no interaction among 
mixture members was 
observed. 
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Table 2: Overview of publications investigating the mixtures patterns and potential mixtures effects in non-European HBM studies. 
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NHANES 
(2009-2010), 
USA 

10537 All ages, but only 
participants ≥ 6 were 
required to provide a 
urine sample and only 
participants ≥ 12 were 
required to provide a 
blood sample 

/ Metals 
Arsenics 
Perchlorate 
Nitrate 
Thiocyanate 
Phytoestrogens 
Phenols 
Pesticides 
Phtalates 
PAHs 
Pyrethroids 
Herbicides 
Organophosphate 
metabolites 
Caffeine and 
metabolites 
DEET and metabolites 
Polyfluoroalkyl 
chemicals 

Urine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Serum 

/ Frequent itemset 
mining 

Exposure 
patterns/co-
occurrence 

90 chemical combinations consisting of 
relatively few chemicals that occur in at least 
30% of the U.S. population were identified, as 
well as three super combinations consisting of 
relatively many chemicals that occur in a small 
but nonnegligible proportion of the population.  
 

/ / Kapraun et al. 
2019 [23] 

MIREC, 
CANADA 

1744 Pregnant women 28 Arsenic 
Lead 
Mercury 
Cadmium 
Manganese 
 
PCBs 
Organochlorine 
pesticides 
PFASs 
 
BPA 
Organophosphate 
pesticides 
Phthalate metabolites 

Blood 
 
 
 
 
 
Plasma 
 
 
 
 
Urine 

All chemicals PCA Exposure 
patterns/co-
occurrence 

- PCA retained eleven components which 
explained approximately 70% of the variation.  
- Persistent organic pollutants (PCB118, 
PCB138, PCB153, PCB180, OXYCHLOR and 
TRANSNONA) and phthalates (MEOHP, MEHHP 
and MEHP) dominated the first and second 
components, respectively, and this explained 
25.8% of the source variation.  
- Prenatal exposure to persistent organic 
pollutants) were positively associated with 
women who have lower education or higher 
income, were born in Canada, have BMI ≥25, or 
were expecting their first child in our study 
population. 

MEOHP, MEHHP and MEHP, dominating 
the second component, however, no 
particular group of pregnant women was 
identified to be highly exposed to 
phthalates. 

Persistent organic pollutants are highly 
present in meat and dairy products 
thereby explaining the clustering and 
dominance of component 1. 
 
MEOHP, MEHHP and MEHP are 
metabolites of DEHP. DEHP is widely 
used in food packaging, cosmetics and 
personal care products hence it is 
expected that they cluster together. 

Lee et al. 2017 
[24] 

NHANES 
(2013-2014), 
USA 

2663 General population (≥ 6 
years) 

6 6 phthalates: 
DBP and metabolite 
MBP 
DIBP and metabolite 
MIBP 
BBP and metabolite 
MBZP 
DEHP and metabolites 
MECPP, MEOHP, 
MEHHP, MEHP 

Urine Majority of the 
metabolites were 
detectable in > 
97% of the 
surveyed 
participants. 

MCR Exposure 
patterns/co-
occurrence 

MCR ranged from 1.1 – 3.6, thus none of the 
exposed participants received the same level of 
risk from the six phthalates.  
 
There were 21 participants (0.8% of the 
NHANES sample) with HI>1. The mean MCR 
value was 2.1. HI and MCR values were 
negatively correlated (p<0.001) indicating that 
most participants, especially those with 
elevated HI values, had their cumulative risks 

 The 6 investigated chemicals are all 
phthalates and phthalates are used in 
many consumer products 

Reyes et al. 
2018 [25] 
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DINP and metabolites 
MINP and MCOP 
DIDP and metabolite 
MCNP 

driven by relatively large doses of a single 
phthalate rather than doses of multiple 
phthalates. 

Baltimore 
Tracking 
Health Related 
to 
Environmental 
Exposures 
(THREE) Study, 
USA 

300 Singleton liveborn babies 24 Organochlorine 
pesticides 
Carbamate pesticides 
Organophosphate 
pesticides 
Pyrethroid pesticides  

Cord 
serum 

/ PCA Exposure 
patterns/co-
occurrence 

There were four independent pesticide 
components: DDT (p,p′- DDT+p,p′-DDE), 
chlordane (trans-nonachlor+oxychlordane), 
permethrin (trans- and cis-permethrins+PBUT), 
and carbamate (bendiocarb + propoxur).  
DDT and chlordane were 6.1 (95%CI: 2.4, 15.5) 
and 2.1 (95%CI: 1.0, 4.2) times higher for 
infants of women >35, and 1.8 (95%CI: 1.2, 2.9) 
and 1.5 (95%CI: 1.1, 2.1) times higher in 
smoking mothers.  
DDT and carbamate were 15 (95%CI: 7, 30) and 
2 (95%CI: 1, 4) times higher for infants of Asian 
compared with Caucasian mothers.  
No significant differences were observed for 
permethrin 

/ / Neta et al. 
2010 [12] 

LIFE study USA 501 
couples 

Married couples, females 
aged 18-40 years and 
males aged 18+ 

128 13 chemical classes:  
PCBs 
Organochlorine 
pesticide 
PBDEs 
PFASs 
Phytoestrogens 
Phtalates metabolites 
Phenols 
Antimicrobial chemical 
Paracetamol and 
derivatives 
Blood metals 
Cotinine 
Urinary metals 
Urinary metalloids 

Blood 
and 
urine 

/  Exposure 
patterns/co-
occurrence 

Shared household explained 43% and 41% of 
the total variance for PFASs and blood metals, 
respectively, but less than 20% for the 
remaining 11 EDC classes. 

 The authors suggest that there are two 
additional factors affecting the familial 
coexposure patterns in our 
investigation. The first one is concerned 
with how long the couples have been 
living together. the second factor is 
potential physiological dampening of 
exposure variability related to the half-
life of the target chemicals. 

Chung et al. 
2018 [11] 

CHMS, Canada 1858 General population aged 
12 to 79 

44 26 classes: Cadmium 
Lead 
Mercury 
Nicotine 
BPA 
Triclosan 
Inorganic arsenic 
Benzo(a)pyrene 
Chrysene 
Fluoranthene 
Fluorene 
Naphthalene 
Phenanthrene 
Pyrene 
Benzene 
Ethylbenzene 
Styrene 
Tetrachloroethylene 
Toluene 
Trichloroethylene 
Bromodichloromethane 
Tribromomethane  
Trichloromethane 
Xylenes 

Blood 
or urine 

/ Exposure loading Exposure 
patterns/co-
occurrence 

1) Adolescents aged 12–19 years had 
significantly lower Exposure Loads than adults 
aged 40–79 years at all thresholds and adults 
aged 20–39 years at the 50th and 75th 
percentiles. 
 
2) Smokers had significantly higher Exposure 
Loads than nonsmokers at all thresholds except 
the LOD. 

No differences in Exposure Loads were 
observed between males and females at 
any threshold. 

1) Age is known to play a role in 
exposure to chemicals and the amounts 
of chemicals measured in people as 
persistent pollutants can 
bioaccumulate, potentially remaining in 
tissues for decades (cadmium, lead and 
mercury).  
 
2) Tobacco smoke is a known source of 
certain chemicals included in our 
analysis 

Willey et al. 
2021 [26] 
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Acrylamide 

EARTH study, 
USA 

300 Mother-infant pairs 
Mothers age between 18-
45 years 

9 DEHP 
MEHP 
MEHHP 
MEOHP 
MECPP 
MiBP 
MBP 
MBzP 
MEP 

Urine / 1) Linear 
regression 
2) PCA 
3) Bayesian 
Kernal Machine 
Regression 

Mixture 
exposure-
health effects 

All metabolites were separately negatively but 
not significantly associated with birth weight. 
 
PCA identified two principal components 
accounting for respectively for 53% and 18% of 
the variance. Both components were inversely 
associated with birth weight [−23 (−68, 22), −27 
(−71, 17) grams respectively].  
 
BKMR further identified that MEP and MEHP 
and phthalate concentrations were linearly 
related to lower birth weight [−51(−164, 63) 
and −122 (−311, 67), respectively]. 

None of the individual phthalates or 
phthalate mixtures were significantly 
associates with birth weight using the 
three selected approaches 

The lack of significance may due to 
small samples, high within-person 
variability of urinary biomarkers, 
survival bias and unmeasured or/and 
residual confounding 

Chiu et al. 
2018 [16] 

HOME study, 
USA 
 

272 Pregnant women 54 Phthalates 
BPA, PFAS 
PCBs 
PBDEs 
Organochlorine 
pesticides 
Metals 

Blood 
or urine 

/ Bayesian 
Hierarchical 
Linear Models 

Mixture 
exposure-
health effects 

There was some evidence that PFAS, DMP and 
Pb were associated with small reductions in 
birth weight. 

For a 10-fold increase in chemical 
concentration, the mean differences in 
birth weights (95% credible intervals (CI)) 
were 1 g (-20, 23) for phthalates, -11 g (-
52, 34) for PFAS, 0.2 g (-9, 10) for PCBs, -4 
g (-30, 22) for PBDEs, and 7 g (-25, 40) for 
OCPs. Hence, exposure to these 
chemicals had null or small associations 
with birth weight.  

This may be explained by the fact that 
PFAS interact with estrogen receptors, 
disrupt hormonal balances and alter 
lipid levels thereby potentially affecting 
fetal growth and development. PFAS 
may also affect adipose tissue 
development and the regulatory 
systems in body weight homeostasis, 
which may impact fetal growth 
outcomes. 

Woods et al. 
2017 [27] 

HOME study, 
USA 

389 Mother-infant pairs Not 
specif
ied 

Phenols 
Phthalates 
Metals 
Pesticides 
PCBs 
PBDEs 
PFAS 
Cotinine 

Blood 
or urine  

< 10% except for 
cadmium (36% < 
LOD) and 
cotinine (21% < 
LOD) 

1) K-means 
clustering 
2) PCA 
3) Linear 
regression 

Mixture 
exposure-
health effects 

Select organochlorine compounds, phenols and 
cadmium demonstrated inverse associations 
with birth length 

 Mixtures of environmental chemicals 
could disrupt mesenchymal stem cell 
differentiation, and these are 
predecessors to bone, cartilage and fat 
cells. Consequently, a decrease in 
osteogenic proliferation may explain a 
smaller infant length at birth. 

Kalloo et al. 
2020 [28] 

LIFECODES 
birth cohort 
USA 

390 99 cases of preterm birth 
291 controls 

17 Arsenic 
Barium 
Beryllium 
Cadmium 
Copper 
Chromium 
Mercury 
Manganese 
Molybdenum 
Nickel 
Lead 
Selenium 
Tin 
Thallium 
Uranium 
Tungsten 
Zinc 

Urine 14 metals with > 
80% > LOD 

1) ENET 
2) PCA 

Mixture 
exposure-
health effects 

1) ENET selected Cu as the most important 
trace metal associated with PTB.  
2) PCA identified 3 principal components (PCs). 
PC2 for essential metals was associated with an 
increased risk of overall (OR 1.36, 95% CI 1.05, 
1.76) and spontaneous (OR 1.58, 95% CI 1.14, 
2.20) preterm birth. 
 

/ / Kim et al. 2018 
[15] 

Project Viva, 
Boston, USA 

726  
465 

Mothers 
Neonates 

6 
PFAS 

PFOA 
PFOS 
PFNA 
PFHxS 
EtFOSAA 
MeFOSAA 
T4 
T4 index 

Plasma All six PFAS were 
detected in 99–
100% of 
plasma samples 

1) Weighted 
quantile sum 
(WQS) 
2) Bayesian 
Kernel Machine 
Regression 
(BKMR) 

Mixture 
exposure-
health effects 

1) Higher concentrations of PFAS mixture were 
associated with significantly lower maternal 
FT4I, with MeFOSAA, EtFOSAA, PFOA, and 
PFHxS contributing most to the overall mixture 
effect. 
2) In infants, higher concentrations of the PFAS 
mixture were associated with lower T4 levels, 
primarily in males, with PFHxS and MeFOSAA 

/ The mechanisms by which PFAS alter 
thyroid function are unclear. Proposed 
mechanisms include reduced 
responsiveness to the hypothalamic-
pituitary-thyroid axis, increased hepatic 
clearance of T4, increased conversion 
of T4 to T3 by type 1 deiodinase, and 

Preston et al. 
2020 [21] 
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TSH contributing most in WQS, and PFHxS 
contributing the most.  

competitive binding to thyroid 
hormone binding proteins. 

Michigan 
Mother-Infant 
Pairs (MMIP) 
birth cohort 
USA 

56 Pregnant women 
between 18 and 42 years 
with a naturally conceived 
singleton pregnancy 

41 12 phthalate 
metabolites 
12 phenol metabolites 
17 heavy metals 

Urine / 1) Spearman 
correlations 
2) PCA 

Mixture 
exposure-
health effects 

Ten of eleven PC groupings demonstrated 
statistically significant associations with 
inflammatory cytokines. 
Using the same 11 PC variables, there were no 
significant associations between EDC mixtures 
with infant birth weight or gestational age at 
delivery. 

/ / Kelley et al. 
2019 [29] 

EARTH study, 
USA 

384 
female
s 
211 
males 
203 
couples 

Men (18-55 years) and 
women (18-46 years) 
were eligible to 
participate either 
independently or as a 
couple. 

15 BPA 
3 Parabens 
11 Phtalates 

Urine All biomarkers 
had detection 
frequencies 
≥70% 

1) PCA 
2) BKMR 

Mixture 
exposure-
health effects 

1) PCA identified the same four factors for 
maternal and paternal preconception mixtures. 
Each unit increase in PCA scores of maternal 
(adjusted Risk Ratio (aRR): 1.36, 95%CI: 1.00, 
1.84) and paternal (aRR: 1.47, 95%CI: 0.90, 
2.42) preconception DEHP-BPA factor was 
positively associated with preterm birth. 
2) BKMR models further showed that maternal 
preconception BPA and mono(2-ethyl-5- 
hydroxyhexyl) phthalate, and paternal 
preconception mono(2-ethylhexyl) phthalate 
were positively associated with preterm birth 
when the remaining mixture components were 
held at their median concentrations. 

 exposure to phenols and phthalates 
may affect the male and female 
germline, probably as a result of 
epigenetic regulation during 
gametogenesis. Moreover, both BPA 
and DEHP have been shown to alter the 
epigenetic regulation of imprinted 
genes in gametes 

Zhang et al. 
2021[30] 



CHAPTER 3 - Results 
 

      
17 

3.5. EUROPEAN HBM STUDIES FOCUSING ON EXPOSURE PATTERNS OR CO-OCCURRENCE IN HBM DATASETS  

This section focuses solely on scientific publications describing co-occurrence patterns of chemicals 

in human biomonitoring datasets. First, we review European HBM studies.  

3.5.1. TAMAYO-URIA ET AL 2019: THE EARLY-LIFE EXPOSOME: DESCRIPTION AND PATTERNS IN SIX EUROPEAN STUDIES 

→ Objective 

The authors aimed to describe the early-life exosome and focused thereby on correlations between 

multiple environmental exposures, their patterns and their variability across European regions and 

across time pregnancy and childhood exposures). This study is part of the HELIX project which aims 

to characterize the exposome during early-life [10]. 

→ Methods 

HELIX is based on six European birth cohort studies: BiB (Born in Bradford), UK; EDEN (Etude des 

Déterminants pré et postnatales du development et de la santé de l’Enfant), France; INMA (INfancia 

y Medio Ambiente), Spain; KANC (Kaunus cohort), Lithuania; MoBa (Norwegian Mother and child 

Cohort Study), Norway; and Rhea (Greece). Data were used from the HELIX sub cohort consisting of 

1301 mother-child pairs with information of environmental exposures during pregnancy and 

between 6 and 11 years of age. 87 environmental exposure variables for the pregnancy period, of 

which 49 variables were related to HBM, and 122 for the childhood period, of which 50 variables 

were related to HBM, were included. Chemical exposures were measured in serum, plasma, blood 

or urine samples using maternal samples collected during pregnancy or at birth and included; 

organochlorine compounds, PBDEs, PFAS, metals and elements, phthalate metabolites, phenols, 

organophosphate pesticide metabolites and cotinine.  

Within-cohort correlations were investigated using Pearson, polychoric or polyserial correlations as 

appropriate. PCA was first conducted within each of 19 pre-defined exposure groups and retained 

only the first principal component for all of them. In this way, a composite index variable (principal 

component scores) for each exposure group were created. Next, all the exposures from the different 

exposure families were included in the same analysis (separately for pregnancy and postnatal 

period), but the authors focused only on the number of components needed to explain 70% or 95% 

of the variation.  

→ Results 

1) Overall correlations tended to be higher than within correlations and the median correlation 

within exposure groups was > 0.3 for many exposure groups. Correlations between maternal 

(pregnancy) and childhood exposures were low and even close to zero for some chemical 

exposures. 
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Figure 1: network visualization of the exposome.  
The size of the nodes is proportional to the number of correlations were > 0.05 outside the exposure 
group and the length of the edges is proportional to the inverse of the correlation between exposures. 
The color of the nodes represents the pre-defined exposures groups. Figure adapted from [10]. 

2) The exposome correlation structure, using individual exposures and within-cohort 

correlations, is visualized as a network in for the pregnancy network (Figure 1A) and in for 

the childhood network above (Figure 2B). Exposures that are close together in the network 

are more correlated than more distant ones. Moreover, the childhood network appears 

more compact than the pregnancy network with more links between exposure families or 

chemical groups as defined above (organochlorine compounds, PBDEs, PFAS, metals and 

elements, phthalate metabolites, phenols, organophosphate pesticide metabolites and 

cotinine). 
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3) Ten principal components explained 45% and 39% of the total variance in the pregnancy and 

childhood exposome, respectively, while 65 and 90 components were required to explain 

95% of the exposome variability.  

→ Discussion 

It was demonstrated that correlations within the same exposure group can be high, but that 

correlations between exposures from different chemical groups were low. High correlations 

between exposures from the same exposure (chemical) group are to be expected as these groups 

are predefined and have also been described previously (Lenters et al., 2015 [3]; Robinson et al., 

2015 [5]). The finding of generally low correlations between exposures from different groups, 

especially after removing cohort effects, is important as it would support the notion that, if this 

finding is generalizable to all populations, epidemiological studies focusing on a single family of 

exposures may not be confounded by exposures from other groups. However, although many 

between-group correlations were low, they cannot be neglected.  

Some of the high correlations may be due to exposures being measured using a common 

methodology (e.g. GIS variables) or a common biological medium (e.g. variables measured in urine) 

or because some variables were used to create others [10]. It is recommended that investigators 

conducting exposome research conduct a thorough exploration of the structure of the exposome 

before evaluating exposome-health associations [10].  

3.5.2. ROSOFSKY ET AL. 2017: EXPOSURE TO MULTIPLE CHEMICALS IN A COHORT OF REPRODUCTIVE-AGED DANISH WOMEN 

→ Objectives 

The extent to which women of childbearing age are exposed to multiple chemicals and how these 

biomarkers of exposure correlate with each other is unclear. A better understanding of the extend 

of exposure in reproductive-aged women is necessary due to the potential for in utero exposure and 

fetal susceptibility. The objectives of the study of Rosofsky et al. 2017 were to characterize 

concentrations of chemical biomarkers during preconception and examine correlations between and 

within chemical classes [4]. 

→ Methods 

Concentrations of 135 markers from 16 chemical classes were measured in blood, serum and urine 

samples from 73 women (18-40 years) enrolled in the prospective Snart Foraeldre/Milieu cohort 

study in Denmark (2011-2014). Biomarkers included metals, organochlorines, phthalates, 

phytoestrogens (a plant-derived dietary estrogen not generated by the own endocrine system but 

derived from consuming phytoestrogenic plants) and pesticides. 

Biomarker correlations between and within chemical classes were examined using principal 

component analysis (PCA). Three models for the PCA were created: all biomarkers combined (Model 
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1), urinary biomarkers only (Model 2) and serum and whole blood biomarkers only (Model 3). 

Analysis were restricted to biomarkers that were detected in 75% of the study population to enhance 

reliability in the PCA estimates.  

The optimal number of principal components were determined for each model. The authors 

restricted Model 1 to three principal components and Models 2 and 3 to two components (Figure 2). 

A factor loading greater than 0.25 indicated a high loading. 

→ Results 

 

Figure 2: Summary of correlations among 135 analytes measured in urine and blood among Snart 
Foraeldre/Milieu women (n=56). Only biomarkers detected in more than 75% of the study population 
were included. Figure adapted from [4]. 

Model 1: biomarkers measured in blood, serum and urine from 56 women 

Persistent pesticides, PCBs and total mercury loaded were loaded on Component 1.  

- Within component 1, PCBs demonstrated high intra-class correlation, indicating that PCBs 

correlate well reciprocally ( 0.33 to 0.98). 

- Both hexachlorobenzene and pp’-DDE were moderately correlated with PCBs (0,39-0.88). 

PAHs, parabens, urinary metals and cotinine were loaded on Component 2. 

- PAHs demonstrated high intra-class correlations (0.62-0.96) and were only highly correlated 

with perchlorate. 

- Within component 2, PFAS exhibited high intra- but not inter-class correlation. 

Phthalate metabolites were the primary chemical class loaded on Component 3. 
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- Phthalate metabolites demonstrated high intra-class correlation but only moderate 

correlations with PFAS and organophosphate metabolites. 

Model 2: biomarkers measured in urine 

PAHs, mono-ethyl phthalate and parabens were loaded on Component 1.  

- PAHs were moderately correlated with mono-ethyl phthalate. 

Arsenic and arsenic metabolites, all other phthalates and non-persistent pesticide metabolites were 

loaded on Component 2. 

- Total arsenic and arsenic metabolites had strong intraclass correlation and were moderately 

correlated with urinary strontium. 

- Diethyl phosphate, a nonspecific metabolite of organochlorine pesticides, was also 

moderately correlated with 3,5,6-trichloro-2-pyridinol, a specific metabolite. 

Model 3: biomarkers measured in blood and serum 

Blood manganese, total mercury, PCBs and persistent pesticides were loaded on component 1. 

- The strongest correlations in this Model were PCBs 99, 238-158, 146, 153, 183 and 187 with 

p,p’-DDE.  

PFAS biomarkers, blood metals, cotinine and PCB28 were loaded on component 2. 

- Blood metals had low intra- and inter-class correlation, while PFAS had high intra-class 

correlation.  

- Cotinine and blood cadmium were moderately correlated (0.58). 

→ Discussion 

Many of the component loadings reflect shared lifestyle patterns in this study population being 

consumer products, or as combustion byproducts according to the authors [4]; 

- Mono-ethyl phthalate, a breakdown product of diethyl phthalate and parabens loaded high 

on the same components. Both are commonly used in cosmetic products, such as hair and 

nail products, fragrances, make-up, and soaps, and in food packaging.  

- PAHs and perchlorate were also found to be strongly correlated, which may be explained by 

the fact that they are both released by combustion processes.  

- The correlations found between phthalates and PAH biomarkers with other chemicals 

classes may be attributed to their cooccurrence in indoor settings [31]. 

- PFAS chemicals are primarily used as stain and grease repellants in cookware and furniture, 

and have been commonly detected in drinking water, with PFOS and PFOA being the most 

ubiquitous. The observed high intra-class and low inter-class PFAS correlations explain 

Model 3, Component 2, where high exposure to one PFAS may be related to exposure to 

other PFAS biomarkers. 
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- Cotinine is frequently used as a surrogate of cigarette consumption in epidemiological 

studies and cadmium and cotinine loading was observed on the same component, indicating 

that smoking status may contribute to a proportion of the variance explained by Component 

2 in Models 1 and 3.  

- In model 1 and 3 it was found that total mercury loaded with PCB congeners that are 

commonly found in food (138, 153, 180). It was previously demonstrated that living in an 

urban area and consumption of saltwater fish were the most predictive factor of mercury in 

hair and PCB concentrations [32]. 

- Low correlations between urinary metals and phytoestrogens suggest that metals and 

phytoestrogens are not derived from the same set of sources as biomarkers that explained 

the highest proportion of variation in the data. For instance, phytoestrogens are almost 

exclusively found the diet, specifically fruits, vegetables, soy products and cereal products. 

Metals are released into the environment from a diverse set of sources, including the natural 

geography and industry. 

3.5.3. GOVARTS ET AL. 2020: EARLY-LIFE EXPOSURE TO MULTIPLE PERSISTENT ORGANIC POLLUTANTS AND METALS AND BIRTH 

WEIGHT: POOLED ANALYSIS IN FOUR FLEMISH BIRTH COHORTS 

→ Objectives 

Prenatal chemical exposure has frequently been associated with reduced fetal growth although 

results have been inconsistent. The objective was to investigate the association between prenatal 

exposure to a mixture of persistent environmental chemicals and birth weight in the pooled dataset 

of four Flemish birth cohorts by comparing results using multipollutant models [2]. 

→ Methods 

Concentrations of biomarkers were measured in cord blood samples of 1579 women from four 

Flemish birth cohorts (FLEHS I, II & III and 3XG) collected of a 10 years’ time period. Biomarkers 

included PCB congeners (138, 153, 180), hexachlorobenzene, pp’-DDE, cadmium and lead. 

Four linear regression-based statistical methods, e.g. Multiple linear regression (MLR), Bayesian 

Information Criterion (BIC), BIC Bayesian model averaging (BMA), penalized regression using 

minimax concave penalty (MCP) and Bayesian Adaptive Sampling (BAS) were applied to assess the 

influence of multiple pollutants in a single analysis on birth weight, adjusted for a priori selected 

covariates.  
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→ Results  

 

Figure 3: Pearson correlation matrix between the ln-transformed exposure biomarkers, figure 
adapted from [2]. 

Correlations between the different pollutants were low to moderate (Pearson’s r = 0.12-0.58), except 

for the three PCB congeners that were highly correlated (Pearson’s r = 0.75-0.83) (Figure 3). In single 

pollutant models, only levels of PCB congeners were significantly associated with reduced birth 

weight. 

Only PCB 180 and p,p’-DDE were significantly associated with birth weight in the MLR model. Using 

BIC as the selection criterion, the model with PCB 180 and p,p’-DDE was selected as the best model 

and this was also confirmed in the BMA approach using BIC for which PCB 180 and p,p’-DDE were 

both associated with birth weight. 

PCB 153, PCB 180 and p,p’-DDE were selected in CP models after stability selection with p,p’-DDE 

having the highest selection probability, followed by PCB 180 and PCB 153. 

PCB 153 and PCB 180 showed an inverse association with birth weight in all multipollutant models 

while p,p’-DDE levels were associated with an increasing birth weight as shown in Figure 4. 
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Figure 4: estimated association between exposure biomarkers and birth weight from the single 
pollutant models (SINGLE) and five different multiple-exposure models (MLR, BIC, BIC-BMA, MCP and 
BAS) for birth weight. Figure adapted from [2]. 

→ Discussion 

p,p’-DDE and PCB 180 were most consistently associated with birth weight according to five different 

multipollutant modeling approaches. In addition, PCB 153 was selected when applying MCP and BAS. 

An inverse association with birth weight was found for the PCB congeners, while an increased birth 

weight was observed for elevated levels of p,p’-DDE. P,p’-DDE had the highest selection probability, 

followed by PCB 180 and PCB 153. The lower selection probability for the PCB congeners is likely at 

least partially due to the strong correlation between them.  

PCB congeners act mainly as estrogens, but also anti-estrogenic, androgenic and anti-androgenic 

activities are described depending on the metabolite and concentration. PCB’s bind to thyroid 

transport proteins thereby disrupting thyroid function [33]. DDE inhibits androgens due to binding 

to their receptors [34] and also disrupts thyroid function [35]. As estrogens and androgens play 

important roles in regulating nutrient delivery to the fetus and organ maturation [36], PCB’s and DDE 

may disrupt fetal development by their endocrine-disrupting characteristics. Additionally, there is 

strong evidence indicating that estrogenic EDCs can program gene activity via epigenetic changes 

during critical periods in development, with long-term consequences that impact the health status 

of the individual throughout the remainder of life [37].  
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3.5.4. OTTENBROS ET AL. 2021: NETWORK ANALYSIS TO IDENTIFY COMMUNITIES AMONG MULTIPLE EXPOSURE 

BIOMARKERS MEASURED AT BIRTH IN THREE FLEMISH GENERAL POPULATION SAMPLES 

→ Objectives 

Graphical representation of correlation patterns between biomonitoring data such as heatmaps or 

circulation correlation globes is increasing. However these methods have some challenges and the 

distinction between groups of correlated compounds is not always straightforward. Networks 

provide a graphical method to represent groups or communities in the data. Networks facilitates the 

detection of exposure patterns and allows for the systematic comparison of observed exposure 

patterns between datasets and strata within datasets [1]. 

→ Methods 

The use of network techniques in HBM data from cord blood samples collected in three campaigns 

of the Flemish Environment and Health Studies (FLEHSI, II & III). Measured biomarkers were multiple 

organochlorine compounds, PFAS and metals. Comparative network analysis (CNA) was conducted 

to systematically compare networks between sampling campaigns, smoking status during 

pregnancy, and maternal pre-pregnancy BMI. 

→ Results and conclusion 

According to Ottenbros et al. 2021, network techniques offer an intuitive approach to visualize 

complex correlation structures within human biomonitoring data. The identification of groups of 

highly connected biomarkers, “communities,” within these networks highlighted which biomarkers 

should be considered collectively in the analysis and interpretation of epidemiological studies or in 

the design of toxicological mixture studies [1].  

 

Figure 5: example of a heatmap (A), circular correlation globe (B) and network including community 
detection (C).  
The heatmap is based on Pearson correlation between the biomarkers. Within the circular globe each 
biomarker is presented as a color-block on the circular axis. Within the network, each dot or node 
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represents a biomarker, each edge represents a connection between the biomarkers and each 
different color represents a community within a subnetwork. Figure adapted from [1]. 

3.5.5. ROBINSON ET AL. 2015: THE PREGNANCY EXPOSOME: MULTIPLE ENVIRONMENTAL EXPOSURES IN THE INMA-
SABADELL BIRTH COHORT 

→ Objectives 

Robinson et al. 2015 aimed to describe the correlation structure of the exposome during pregnancy 

to better understand the relationships between and within families of exposure and to develop 

analytical tools appropriate to exposome data [5]. 

→ Methods 

Data from the Environment and Childhood Project (INMA) in Sabadell, Spain, were used of 728 

pregnant women. 81 chemicals covering the pregnancy period were collated into a single data set. 

Biomonitoring data included organochlorines and PFAS in serum, mercury in cord blood, PBDEs in 

breast milk and metals, phthalates, BPA and cotinine in urine. 

Pair-wise Pearson’s correlations (for continuous variables) and polychoric correlations (for 

correlations involving binary variables) between each individual exposure were calculated to 

produce a correlation matrix. Heat map and circos plots were made to display the correlations. 

Principal components were derived directly from the correlations.  

→ Results 

- The mean correlation (r) all exposures was 0.08 with a standard deviation of 0.21 (median = 

0.02; 5-95th centiles = -0.12-0.54).  

- The four PFOA compounds had the strongest median absolute correlation (r = 0.62) of the 

individually measured biomarkers. The other biomarker families, PDBEs, phthalates, metals, 

and organochlorines, had all median absolute correlations below 0.5, reflecting their more 

diverse sources.  

- The strongest correlation within the home environment exposures was between use of 

home and garden pesticides (r = 0.16). Overall, the median of all within-family absolute 

correlations was 0.45 (5th−95th centiles, 0.07−0.85).  

- “Blocks” of high correlation within families of exposure were observed along the main 

diagonal of the heat map (Figure 6), with certain groups such as the organochlorines and 

phthalate metabolites showing less dense within-family correlations than more closely 

linked exposures such as the PFAS. With respect to between family correlations, no exposure 

had an absolute correlation higher than 0.6 with an exposure outside its family. 

- Only three pairwise correlations between biomarker measured exposures in separate 

families were above 0.3 with the strongest correlation observed between 

perfluorooctanesulfonic acid and PCB-153 (r = 0.32). Overall, the median of all between-

family absolute correlations was 0.05 (5th−95th centiles, 0.01−0.23).  
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- Only three principal components were required to explain 50% of variance across the hole 

data set, while six components explained 70% of variance and 22 components explained 95% 

of the variance. 

 

Figure 6: Correlation heatmap, showing pair correlations across all exposures, with blue color 
indicating positive correlations and red color indicating negative correlations. Figure adapted from 
[5]. 

→ Discussion 

Robinson et al. 2015 concluded that they found strong levels of correlations within families of 

exposure. Hence, it is important that results reported for single exposures need to be interpreted in 

light of their correlations to other exposures within their respective families.  
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3.6. EUROPEAN HBM STUDIES DESCRIBING CHEMICAL CO-OCCURRENCE PATTERNS IN RELATION WITH HEALTH 

OUTCOMES 

3.6.1. GOVARTS ET AL. 2016: COMBINED EFFECT OF PRENATAL EXPOSURES TO ENVIRONMENTAL CHEMICALS ON BIRTH 

WEIGHT 

→ Objectives 

Prenatal chemical exposure has frequently been associated with reduced fetal growth. The goal of 

this study was to investigate the effects of exposure to single pollutants and mixtures on birth weight 

in mother-child pairs [18]. 

→ Methods 

Data from FLEHS II mother-child cohort were used of 248 newborn-mother couples with an 

uncomplicated liveborn singleton pregnancy. The birth outcome of interest was birth weight. 15 

chemicals were measured in individual samples. Lead, manganese, copper, thallium and arsenic were 

measured in cord blood and cadmium was measured in maternal whole blood samples. PCB-138, 

PCB-153, PCB-180, p,p’-DDE, PFOS, PFOA and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) 

were measured in plasma cord samples. Total mercury and methylmercury were measured in 

maternal hair samples.  

Linear regression models were used to quantify the effect on birth weight associated with one 

pollutant. Two different statistical methods were used to investigate the effects of combined 

exposure on birth weight; principal component regression and an algorithm to explore the effect of 

mixtures.  

→ Results 

Single pollutant multiple linear regression models showed a significant inverse association (p = 0.016) 

between increasing arsenic concentrations in cord blood and lower birth weight. 

For the PCs composed from the whole PCA, none of the principal components were statistically 

significant (p < 0.05) associated with birth weight. However, since the models were built for a subset 

of 152 from 248 individuals, statistical power may be reduced. For the PCs resulting from the subset 

PCA, a significant negative association with birth weight was found for PC4 (p = 0.009) constituted 

by arsenic and cadmium (Figure 7).  

Mixtures with arsenic, cadmium and MECPP showed a strong association with birth weight as can be 

derived from the estimates (algorithm). The mixtures with the highest association with birth weight 

were composed of five chemicals, i.e., PFOA, lead, cadmium, arsenic, and MECPP (p = 0.0019) and 

cadmium, thallium, arsenic, MECPP, and methylmercury (p = 0.0021). A strong effect of mixture 

exposures in girls was identified when combining six chemicals, i.e., PFOS, lead, cadmium, 

manganese, thallium, and methylmercury (p = 0.0006); and PFOA, lead, cadmium, thallium, arsenic, 
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and methylmercury (p = 0.0007). In boys, the mixture of MECPP with cadmium (p = 0.0061) showed 

a stronger association with birth weight as compared to MECPP alone (p = 0.06). 

 

Figure 7: results of the principal component regression for the whole PCA (all 16 exposures) and 
subset PCA (subset of 12 exposures). Figure adapted from [18]. 

3.6.2. AGAY-SHAY ET AL. 2015: EXPOSURE TO ENDOCRINE-DISRUPTING CHEMICALS DURING PREGNANCY AND WEIGHT AT 7 

YEARS OF AGE: A MULTI-POLLUTANT APPROACH 

→ Objectives  

Prenatal exposure to endocrine-disrupting chemicals (EDCs) may induce weight gain and obesity in 

children, but the obesogenic effects of mixtures have not been studied. Therefore, the authors 

evaluated the associations between pre- and perinatal biomarker concentrations of 27 EDCs and 

child weight status at 7 years of age [22]. 

→ Methods 

Data from the Environment and Childhood Project (INMA) in Sabadell, Spain, were used of 657 

mother-child pairs. The birth outcome of interest was weight and height of the children at 

approximately 7 years of age. 27 chemicals were measured in individual samples; BPA, ten phthalate 
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metabolites and metal concentrations (arsenic, lead and cadmium) were measured in maternal urine 

samples. Organochlorine pesticides and PCBs were measured in maternal blood samples. Cord blood 

was used to measure total mercury and maternal colostrum samples were used to measure PBDEs. 

PCA was applied to evaluate multiple chemical exposures simultaneously and four factors (or 

components) were chosen of which three were clearly defined by specific exposure groups (PBDEs, 

phthalates, organochlorines). The fourth factor was a mix of chemicals from different exposure 

groups, reflecting a pattern of higher MEP, As, Hg, BPA, and PBDE exposure and lower DDE and βHCH 

exposure. The reasons for this patterning are not clear and require further evaluation. 

- Factor 1: PBDEs 

- Factor 2: phthalates 

- Factor 3: organochlorine 

- Factor 4: MEP, As, HG, BPA, PBDE153, PBDE-154 

→ Results 

A factor reflecting combined exposure to multiple phthalate metabolites showed weak evidence for 

an association with reduced BMI. Exposure to other EDCs, whether in single-pollutant or combined 

multi-pollutant analyses, showed no evidence for an association with child weight status. 

- In the model that simultaneously included all four factors, exposure to the highest tertile 

compared with the lowest tertile of the organochlorine factor (factor 3) was associated with 

significant increase in the z-BMI RR of 0.37 (95% CI: 0.03, 0.72) and with an increase in the 

RRs of overweight of 2.59 (95% CI: 1.19, 5.63). In tertile 2, z-BMI and overweight 

demonstrated a nonsignificant increase (adj β tertile 2 vs. 1: 0.12; 95% CI: –0.19, 0.43; adj 

RRs tertile 2 vs. 1: 1.86; 95% CI: 0.92, 3.76).  

- Exposure to the phthalate factor (factor 2) showed a decrease in the RRs for overweight of 

0.49 (95% CI: 0.25, 0.96) in tertile 2 and nonsignificant negative associations in tertile 3 

compared with tertile 1 of 0.63 (95% CI: 0.33, 1.19). Similar, nonsignificant negative 

associations were observed with z-BMI for exposure to the phthalate factor (factor 2) in 

tertile 3 and tertile 2 compared with tertile 1. 

- Exposure to the PBDE factor (factor 1) showed a nonsignificant decrease in the RRs for 

overweight (adj RRs tertile 2 vs. 1: 0.61; 95% CI: 0.28, 1.34; adj RRs tertile 3 vs. 1: 0.54; 95% 

CI: 0.25, 1.17). Similar, nonsignificant negative associations with z-BMI were observed for 

exposure to the PBDE factor (factor 1) in tertile 3 and tertile 2 compared to tertile 1.  

3.6.3. PHILIPPAT ET AL. 2019: PRENATAL EXPOSURE TO SELECT PHTHALATES AND PHENOLS AND ASSOCIATIONS WITH FETAL 

AND PLACENTAL WEIGHT AMONG MALE BIRTHS IN THE EDEN COHORT (FRANCE) 

→ Objective 

The placenta performs crucial physiological functions to ensure normal fetal development. The goal 

was to explore the associations between urinary concentrations of phthalate and phenol biomarkers 
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during pregnancy and placental weight and placental-to-birth weight ratio (PFR) among male 

newborns. Associations between biomarkers and birthweight were also investigated [20].  

→ Methods 

Data from a subgroup of the EDEN mother-child cohort, consisting of 473 mother-son pairs recruited 

from april 2003 to March 2006 in France, were used. The birth outcomes of interest were placental 

weight, birth weight and PFR. 9 phenols (4 parabens, 2 dichlorophenols, triclosan, benzophenone-3, 

bisphenol A) and 11 phthalate metabolites were measured in spot urine samples collected between 

week 23 and 29 of gestation.  

Adjusted Elastic Net penalized regression models (ENET) was used to select biomarkers associated 

with the birth outcomes of interest. Unpenalized effect estimates were then obtained by fitting linear 

regression models simultaneously adjusted for the ENET-selected biomarkers and a priori chosen 

confounders. 

→ Results 

The ENET model retained four biomarkers for placental weight: triclosan (β = -4.11 g [95% CI: -

8.26;0.05]) and MNCP (β = -10.9 g [95% CI: -21.8;0.09]) which were negatively associated with 

placental weight while benzophenone-3 (β = 4.76 g [95% CI: -1.77;11.3]) and the sum of parabens (β 

= 7.12 g [95% CI: 0.41;13.9]) were positively associated with this outcome.  

Regarding birth weight, benzophenone-3 was the only biomarker selected by the ENET model and 

the associated unpenalized effect estimate was 21.0 g [95% CI: -3.45;45.5] . 

The ENET model retained two phthalate metabolites for PFR, MNCP (β = -0.20 [95% CI: -10.54;0.13]) 

and MCOP (β = -0.23 [95% CI: -0.58;0.11]) which were negatively associated with this outcome. 

→ Discussion 

These results provide preliminary evidence of possible associations between other compounds such 

as triclosan, benzophenone-3, MCNP, and MCOP and both placental weight and PFR. The fact that 

the direction of the associations with placental weight differed across biomarkers might indicate 

different mechanisms of action [20]. 

3.6.4. BÉRANGER ET AL. 2019: MULTIPLE PESTICIDES IN MOTHERS’ HAIR SAMPLES AND CHILDREN’S MEASUREMENTS AT 

BIRTH: RESULTS FROM THE FRENCH NATIONAL BIRTH COHORT (ELFE) 

→ Objective 

The general population is continuously and ubiquitously exposed to numerous pesticides. However, 

studies investigating the possible role of environmental exposure to pesticides on fetal growth have 

focused on a limited set of substances despite a range of pesticides are present today. Therefore, 
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the authors explored the relation between maternal hair concentrations of multiple pesticides and 

metabolites and the measurements at birth of their newborns. 

→ Methods 

Data from the ELFE French nationwide birth cohort, consisting of 311 women who gave birth to 

liveborn singleton at ≥ 33 weeks of gestation in France in 2011, were used. The birth outcomes of 

interest were birth weight, length and head circumference. 64 chemical substances were detected 

in hair samples; organochlorines, organophosphorus, pyrethroids, carbamates, dinitroanilines, 

thiocarbamates, Phenylpyrazoles, acid herbicides, azoles, oxadiazines, Trizines/triazones, amide 

pesticides, strobilurins, carboxamides, urea, neonicotinoids, anilino-pyrimidines. 

ENET was applied to simultaneously select the strongest predictors of measurements at birth. 

Selected variables were multiply imputed for missing values and unpenalized estimators were 

assessed by standard linear regression. 

→ Results 

Statistically significant associations were observed between maternal hair concentrations of seven 

pesticides or pesticide metabolites and birth measurements (weight: fipronil sulfone; length: TCPy, 

bitertanol, DEP, and isoproturon; head circumference: tebuconazole and prochloraz).  

Analyses restricted to boys identified twelve additional compounds: eight independently associated 

with birth weight (3Me4NP, DCPMU, DMST, fipronil, mecoprop, propoxur, fenhexamid, and 

thiabendazole), two with birth length (dieldrin and β-endosulfan), and six with head circumference 

(β-endosulfan, β-HCH, fenuron, DCPMU, propoxur, and thiabendazole). 

3.6.5. LENTERS ET AL. 2016: PRENATAL PHTHALATE, PERFLUOROALKYL ACID AND ORGANOCHLORINE EXPOSURES AND TERM 

BIRTH WEIGHT IN THREE BIRTH COHORTS: MULTI-POLLUTANT MODELS BASED ON ELASTIC NET REGRESSION 

→ Objective 

Associations between multiple corelated biomarkers of environmental exposure and birth weight 
were investigated [3]. 

→ Methods 

Data from three birth cohorts were used with in total 1250 term singleton infants; 513 mother-infant 

pairs from Greenland, 180 from Poland and 557 from Ukraine. Outcome of interest was birth weight. 

Secondary metabolites of DEHP and DiNP, eight perfluoroalkyl acids and organochlorines (PCB-153 

and p,p’-DDE) were measured in maternal serum samples. Associations were identified by elastic net 

penalty to linear regression models.  
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→ Results 

Two phthalate metabolites (MEHHP, MOiNP), perfluorooctanoic acid (PFOA), and p,p´-DDE were 

most consistently predictive of term birth weight based on elastic net penalty regression. In an 

adjusted, unpenalized regression model of the four exposures, two standard deviation increases in 

natural log–transformed MEHHP, PFOA, and p,p´-DDE were associated with lower birth weight: -87 

g (95% CI: -137, -340 per 1.70 ng/mL), -43 g (95% CI: -108, 23 per 1.18 ng/mL), and -135 g (95% CI: –

192, -78 per 1.82 ng/g lipid), respectively; and MOiNP was associated with higher birth weight (46 g; 

95% CI: -5, 97 per 2.22 ng/mL). 

→ Discussion 

It is suggested that several of these environmental chemicals, belonging to three chemical classes, 

may be independently associated with impaired fetal growth. Lenters et al. 2016 suggested that 

increased oxidative stress and modulation of sex or thyroid hormones homeostasis may play a role 

in development and growth velocities. Additionally, PFASs may interfere with lipid metabolism via 

activation of the peroxisome proliferator-activated receptor alpha (PPARα) [38]. BPA and a few 

phthalates on the other hand were associated with perturbations of biomarkers of angiogenesis 

linked to placental development and function, which may have in turn adverse consequences on 

fetal growth [39]. 

3.6.6. MARKS ET AL. 2021: PRENATAL EXPOSURE TO MIXTURES OF PERSISTENT ENDOCRINE DISRUPTING CHEMICALS AND 

EARLY MENARCHE IN A POPULATION-BASED COHORT OF BRITISH GIRLS 

→ Objective 

The associations between prenatal exposure to PFAS, PCBs and organochlorine pesticides as 

mixtures with early menarche among female offspring were investigated [14]. 

→ Methods 

Data from a nested case-control study within the Avon Longitudinal Study of Parents and Children 

(ASLPAC) recruited in the UK in 1991-1992 were used. Concentrations of 52 chemicals (8 PFAS, 35 

PCBs, and 9 OCPs) were quantified in 448 maternal serum samples collected during pregnancy. 

Daughter’s age at menarche was ascertained through questionnaires. 

Bayesian kernel machine regression (BKMR) was used to visualize the exposure-response function 

and verify assumptions. In the case of no identification of non-linearity and or interaction within the 

mixture through BKMR, weighted quantile sum (WQS) regression was used to estimate associations 

of maternal EDC mixtures with early menarche. 
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→ Results 

1) Weighted quantile sum regression models showed null associations between the indices for 

mixtures (PFAS, PCBs, OCPs, and all three classes combined) and early menarche. The odds 

ratio for early menarche for a one-decile increase in chemical concentrations for all three 

classes combined was 0.89 (95% CI: 0.76, 1.05). 

2) In the BKMR model for all three classes combined, no interaction among mixture members 

was observed. Some chemicals had slightly positive associations (PFHxS, EtFOSAA), some 

appeared to have negative associations (MeFOSAA, PCB206, β-HCH), but most showed no 

association with early menarche.  

→ Discussion  

Almost all models suggested that higher prenatal exposure to persistent EDCs was not associated 

with early menarche, though effect sizes varied.  

Associations were further away from the null in WQS regression models than in BKMR. WQS 

regression assumes that all associations are in the same direction; if this assumption is not met, 

results can be biased away from the null. This potential for bias could explain the differences in 

magnitude between WQS regression and BKMR. 

3.7. NON-EUROPEAN HBM STUDIES FOCUSING ON EXPOSURE PATTERNS OR CO-OCCURRENCE IN HBM DATASETS  

This section focuses solely on scientific publications describing co-occurrence patterns of chemicals 

in human biomonitoring datasets extended to non-European HBM studies.  

3.7.1. KAPRAUN ET AL. 2017: A METHOD FOR IDENTIFYING CHEMICAL COMBINATIONS IN THE U.S. POPULATION 

→ Objectives 

People are exposed daily to a variety of chemicals but the number of mixtures that can be formed 

from these thousands of environmental chemicals is enormous and testing all of them would be 

impossible. Therefore, Kapraun et al. 2017 sought to develop and demonstrate a method for 

identifying those mixtures that are most prevalent in humans [23]. 

→ Methods 

Frequent itemset mining [23], a technique traditionally used for market basket analysis, was applied 

on biomonitoring data from the 2009-2010 cycle of the continuous National Health and Nutrition 

Examination Survey (NHANES) to identify combinations of chemicals that frequently co-occur in 

people.  
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→ Results 

The authors identified 90 chemical combinations consisting of relatively few chemicals that occur in 

at least 30% of the U.S. population, as well as three super combinations consisting of relatively many 

chemicals that occur in a small but nonnegligible proportion of the population.  

→ Conclusion 

It was demonstrated how FIM can be used in conjunction with biomonitoring data to narrow a large 

number of possible chemical combi- nations down to a smaller set of prevalent chemical 

combinations. 

3.7.2. LEE ET AL. 2017: IDENTIFICATION OF CHEMICAL MIXTURES TO WHICH CANADIAN PREGNANT WOMEN RE EXPOSED: THE 

MIREC STUDY 

→ Objective 

Although the importance of chemical mixtures has been recognized for some time, rigorous study of 

their levels and impact has been slow. The goal of this study was to identify the pattern of chemical 

mixtures to which women are exposed and to characterize women with elevated exposure to various 

mixtures [24]. 

→ Methods 

Data from the Maternal-Infant Research on Environment Chemicals (MIREC) study were used of 1744 

participants. Arsenic, lead, mercury, cadmium, manganese, PCBs, organochlorine pesticides, and 

PFAS were measured in blood samples while BPA, organophosphate pesticides and phthalates were 

measured in urine samples. 

Cluster analysis was implemented to categorize participants based on their socio-demographic 

characteristics, while principal component analysis (PCA) was used to extract the chemicals with 

similar patterns and to reduce the dimension of the dataset. 

→ Results 

PCA retained eleven components which explained approximately 70% of the variation. Persistent 

organic pollutants (PCB118, PCB138, PCB153, PCB180, OXYCHLOR and TRANSNONA) and phthalates 

(MEOHP, MEHHP and MEHP) dominated the first and second components, respectively, and the first 

two components explained 25.8% of the source variation.  

Prenatal exposure to persistent organic pollutants (first component) was positively associated with 

women who have lower education or higher income, were born in Canada, have BMI ≥25, or were 

expecting their first child in our study population. 
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MEOHP, MEHHP and MEHP, dominating the second component, were detected in at least 98% of 

1744 participants in our cohort study; however, no particular group of pregnant women was 

identified to be highly exposed to phthalates. 

→ Discussion 

Similar as in the studies of Agay-Shay et al. 2015 and Robinson et al. 2015 which were described 

above, it was demonstrated that POPs dominate one component in PCA. The chemicals (PCB118, 

PCB138, PCB153, PCB180, OXYCHLOR and TRANSNONA) that dominated PC1 are persistent organic 

pollutants, which are mainly found in meat and dairy. The highest concentrations are found in 

animals at the top of the food chain, including humans [24]. Therefore, it is not surprisingly that these 

chemicals were highly correlated and dominate one component. 

Three phthalates (MEOHP, MEHHP ANDMEHP) that dominated the second component are also 

highly and linearly correlated and are metabolites of di-2-ethylhexyl phthalate (DEHP) [40]. DEHP is 

widely used in food packaging, cosmetics and personal care products including fragrances, soft PVC 

products, building and furniture materials, and medical devices [41]. Hence, one would expect them 

to be clustered together so it is not surprising that human exposure to DEHP is nearly ubiquitous 

[24]. 

3.7.3. REYES ET AL. 2018: AN ANALYSIS OF CUMULATIVE RISKS BASED ON BIOMONITORING DATA FOR SIX PHTHALATES USING 

THE MAXIMUM CUMULATIVE RATIO 

→ Objective 

In this study, MCR was used to evaluate co-exposures to six phthalates [25]. 

→ Methods 

Biomonitoring data from 2663 participants of the 2013-2014 cycle of the NHANES study were used. 

Hazard Index( HI) and MCR were determined. The Hazard Index (HI) is a screening tool for estimating 

cumulative risks from exposures to multiple chemicals from a common mechanism group. This 

approach assumes dose addition. MCR values are constructed based on hazard information. The 

Maximum Cumulative Ratio (MCR) quantifies the degree to which a single chemical drives the 

cumulative risk of an individual exposed to multiple chemicals. 

→ Results 

The MCR calculated ranged from 1.1 to 3.6. Because six phthalates were considered, MCR can range 

between 1 and 6. The finding that MCR values were all at or below 3.6 indicated that none of the 

exposed participants received the same level of risk from the six phthalates. 
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There were 21 participants (0.8% of the NHANES sample) with HI>1. The mean MCR value in the 21 

participants was 2.1. HI and MCR values were negatively correlated (p<0.001) indicating that most 

participants, especially those with elevated HI values, had their cumulative risks driven by relatively 

large doses of a single phthalate rather than doses of multiple phthalates. The dominate phthalate 

varied across participants.  

3.7.4. NETA ET AL. 2010: DISTRIBUTION AND DETERMINANTS OF PESTICIDE MIXTURES IN CORD SERUM USING PRINCIPAL 

COMPONENT ANALYSIS 

→ Objective 

The aims of this study were to identify mixtures of cord serum concentrations of organophosphorus, 

carbamate, pyrethroid and organochlorine pesticide using PCA and to identify demographic and 

socioeconomic factors associated with in utero mixtures among a population of babies born in 

Baltimore, USA [12]. 

→ Methods 

Data of 300 singleton live births from a cross-sectional study of newborn deliveries of the Baltimore 

Tracking Health Related to Environmental Exposures (THREE) Study were used. Mixtures were 

identified using PCA. 

→ Results 

There were four independent pesticide components: DDT (p,p′- DDT+p,p′-DDE), chlordane (trans-

nonachlor+oxychlordane), permethrin (trans- and cis-permethrins+PBUT), and carbamate 

(bendiocarb + propoxur).  

- DDT and chlordane were 6.1 (95%CI: 2.4, 15.5) and 2.1 (95%CI: 1.0, 4.2) times higher for 

infants of women >35, and 1.8 (95%CI: 1.2, 2.9) and 1.5 (95%CI: 1.1, 2.1) times higher in 

smoking mothers.  

- DDT and carbamate were 15 (95%CI: 7, 30) and 2 (95%CI: 1, 4) times higher for infants of 

Asian compared with Caucasian mothers.  

- No significant differences were observed for permethrin. 

→ Discussion 

Fetal exposures to pesticides are widespread, occur as mixtures, and differ by maternal race, age, 

and smoking status. 

Concentrations of the two chlordane-related chemicals were highly positively correlated with each 

other and were both detected in the majority of cord serum samples, suggesting that fetal exposures 

to this chlordane mixture are prevalent in the Baltimore area. p,p′-DDT and p,p′-DDE also were highly 
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correlated and detected in nearly every sample, suggesting that fetal exposures to DDT in the 

Baltimore area are prevalent and attributable to a mixture in which the environmental 

transformation product p,p′-DDE is a predominant compound. DDT mixtures with a predominance 

of DDE are considered to be from less recent DDT usage. Concentrations of permethrin cis- and trans-

isomers were highly correlated with each other and with PBUT. Permethrin house and garden 

products are formulated with cis-and transisomers as well as with PBUT, a permethrin synergist. This 

suggests that fetal exposures to permethrin in this area may be related to house and garden 

products. 

3.7.5. CHUNG ET AL. 2018: TOWARDS CAPTURING THE EXPOSOME, EXPOSURE BIOMARKER VARIABILITY AND COEXPOSURE 

PATTERNS IN THE SHARED ENVIRONMENT 

→ Objective 

The authors examined the influence of a shared household and partner’s sex in relation to the 

variation in 128 endocrine disrupting chemical (EDC) exposures among couples [11]. 

→ Methods 

501 couples planning to become pregnant were recruited in the LIFE study, USA between 2005-2009. 

Participants were eligible for inclusion if they were married or in a committed relationship, and 

females were between 18-40 years old and men were +18 years. 128 persistent and nonpersistent 

EDC from 13 chemical classes were measured including PCBs, organochlorine pesticide, PBDEs, 

PFASs, phytoestrogens, phthalates metabolites, phenols, antimicrobial chemicals, paracetamol and 

derivatives, blood metals, cotinine, urinary metals, urinary metalloids.  

Sex specific differences, variance explained by shared household were estimated by Spearman’s rank 

correlation coefficients (Rs) for females, males and couples’ exposures. Correlation between 

exposures were visualized by an exposome globe.  

→ Results 

1) Sex was correlated with 8 EDCs including per- and polyfluoroalkyl substances (PFASs) (p < 

0.05).  

2) Shared household explained 43% and 41% of the total variance for PFASs and blood metals, 

respectively, but less than 20% for the remaining 11 EDC classes.  

3) For females, two larger positively correlated “clusters” across EDC classes were observed: A) 

a dense cluster with serum persistent organic compounds such as PCBs and OCPs B) another 

loosely packed cluster with urinary EDCs such as phytoestrogens, phthalates, phenols, and 

antimicrobial compounds (Figure 8).  

4) For males, there were similar coexposure patterns to females. While we found similar 

correlations in the population of males and females separately, we found that correlations 
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in couples living in the same household were, in fact, less densely packed and with values 

attenuated toward the null. 

 

Figure 8: Exposome correlation globe showing the relationships of biomarkers between females, 
males, and couples.  
Right-half represents biomarkers in females; left-half represents biomarkers in males. Only 
Spearman’s rank correlations greater than 0.25 and smaller than -0.25 were shown as connections 
in the globe. Red line denotes positive correlation, and dark green line denotes a negative one. Color 
intensity and line width are proportional to the size of the correlation. Within-class and between-class 
correlations are shown outside and inside of the track respectively. Correlations in couples are 
indicated by the lines linking females and males (i.e., crossing the vertical-half of the globe). 

→ Discussion 

These findings suggest that individual, rather than shared environment, could be a major factor 

influencing the covariation of the exposome. 
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Although couples in this study hypothetically potentially share a large degree of dietary and indoor 

environmental factors, their exposures were only modestly correlated (low RS). The authors suggest 

that there are two additional factors affecting the familial coexposure patterns in our investigation. 

The first one is concerned with how long the couples have been living together. the second factor is 

potential physiological dampening of exposure variability related to the half-life of the target 

chemicals. 

3.7.6. WILLEY ET AL. 2021: EXPOSURE LOAD: USING BIOMONITORING DATA TO QUANTIFY MULTI-CHEMICAL EXPOSURE 

BURDEN IN A POPULATION 

→ Objective 

Exposure Load may provide an indication of overall exposure burden in a population and may be 

used to identify potentially vulnerable subpopulations that may be disproportionality exposed to 

multiple chemicals, as well as to characterize intrinsic and extrinsic factors that may contribute to 

heterogeneity in chemical exposure profiles across a population [26]. 

→ Methods 

Data were used from cycles 3 (2012-2013) and 4 (2014-2015) from the Canadian Health Measures 

Survey (CHMS). 44 biomarkers from 26 chemical classes were measured in blood and urine samples 

of 1858 participants aged 12 to 79. Chemicals classes were: cadmium, lead, mercury, nicotine, BPA, 

triclosan, inorganic arsenic, benzo(a)pyrene, chrysene, fluoranthene, fluorene, naphthalene, 

phenanthrene, pyrene, benzene, ethylbenzene, styrene, tetrachloroethylene, toluene, 

trichloroethylene, bromodichloromethane, tribromomethane trichloromethane, xylenes, 

acrylamide.  

Exposure Load is defined as the number of chemicals measured in an individual above a defined 

concentration threshold. Exposure Load was calculated based on five concentration thresholds; LOD, 

and the 50th, 75th, 90th and 95th percentile. 

→ Results 

1) At higher thresholds, such as the 95th percentile, the majority of Canadians had an Exposure 

Load between 0 and 3, although some people had an Exposure Load of up to 15, indicating 

high exposures to multiple chemicals.  

2) Adolescents aged 12–19 years had significantly lower Exposure Loads than adults aged 40–

79 years at all thresholds and adults aged 20–39 years at the 50th and 75th percentiles.  

3) Smokers had significantly higher Exposure Loads than nonsmokers at all thresholds except 

the LOD, which was expected given that tobacco smoke is a known source of certain 

chemicals included in our analysis.  

4) No differences in Exposure Loads were observed between males and females at any 

threshold. 
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→ Discussion 

These findings broadly suggest that Canadians are concurrently exposed to many chemicals at lower 

concentrations and to fewer chemicals at high concentrations.  

The youngest age group (12–19 years) had a significantly lower Exposure Load than older age groups. 

Age is known to play a role in exposure to chemicals and the amounts of chemicals measured in 

people as persistent pollutants can bioaccumulate, potentially remaining in tissues for decades 

(cadmium, lead and mercury). Moreover, changes in regulations and the phase out of chemicals can 

translate into younger people having less exposure to certain legacy chemicals, while older people 

can retain persistent chemicals from past exposures when their use was more widespread. Finally, 

also reduction in homeostatic reserves and decreased function of organ systems responsible for 

eliminating xenobiotics due to aging may contribute to higher exposures in older people [26]. 

3.8. NON-EUROPEAN HBM STUDIES DESCRIBING CHEMICAL CO-OCCURRENCE PATTERNS IN RELATION WITH 

HEALTH OUTCOMES 

3.8.1. CHIU ET AL. 2018: EVALUATING EFFECTS OF PRENATAL EXPOSURE TO PHTHALATE MIXTURES ON BIRTH WEIGHT: A 

COMPARISON OF THREE STATISTICAL APPROACHES 

→ Objective 

Three statistical approaches were applied to evaluate associations between prenatal urinary 

concentrations of a mixture of phthalate metabolites and birth weight [16]. 

→ Methods 

Data of the Environment and Reproductive Health (EARTH) Study (USA) are used of 300 mother-

infant pairs. Women were eligible if they were age 18 to 45 years at enrollment and delivered a 

singleton live born infant between 2005-2016. Outcomes of interest were birth weight and 

gestational age. Urinary concentrations of DEHP, MEHP, MEHHP, MEOHP, MECPP, MiBP, MBP, MBzP 

and MEP were measured.  

The authors applied 1) linear regressions; 2) PCA and structural equation models (SEM) and 3) 

Bayesian Kernel Machine Regression (BKMR). This method utilizes a non-parametric approach to 

evaluate dose-response relationships, allowing for possible non-linearity and interactions in 

exposure outcome associations.  

→ Results 

When analyzing one metabolite at a time, all metabolites were negatively but not significantly 

associated with birth weight. 
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PCA identified two principal components accounting for respectively for 53% and 18% of the 

variance. The first component had high loading factors for MEHP, MEHHP, MEOHP and MECPP while 

the second component had high loading factors for MEP, MBP, MiBP and MBzP. Both components 

were inversely associated with birth weight [-23 (-68, 22), -27 (-71, 17) grams respectively].  

These inverse associations were confirmed when applying SEM. BKMR further identified that MEP 

and MEHP and phthalate concentrations were linearly related to lower birth weight [-51(-164, 63) 

and -122 (-311, 67), respectively], and suggested no evidence of interaction between metabolites. 

Unfortunately, none of the individual phthalates or phthalate mixtures were significantly associates 

with birth weight using the three selected approaches. 

→ Discussion 

The lack of significance may due to small samples, high within-person variability of urinary 

biomarkers, survival bias and unmeasured or/and residual confounding.  

As PCA is agnostic approach to reduce the dimension of exposure without considering the 

correlations with the outcome measure, it is unclear whether the group of phthalate metabolites or 

specific phthalate metabolites within the group was responsible for the inverse association with birth 

weight.  

3.8.2. WOODS ET AL. 2017: GESTATIONAL EXPOSURE TO ENDOCRINE DISRUPTING CHEMICALS IN RELATION TO INFANT BIRTH 

WEIGHT: A BAYESIAN ANALYSIS OF THE HOME STUDY 

→ Objectives 

The association of gestational exposure to five chemical classes of potential EDCs with infant birth 

weight was investigated [27]. 

→ Methods 

Data from 272 pregnant women of the Health Outcomes and Measures of Environment (HOME) 

Study (USA) were used. The outcome variable was birth weight. Nine phthalates, BPA, five PFAS, 

twenty-three PCBs, nine PBDEs, six organochlorine pesticides and two heave metals were measured 

in blood and urine samples. Bayesian Hierarchical Linear Models (BHML) was used to examine the 

association between exposure to these chemicals and birth weight. 

→ Results 

For a 10-fold increase in chemical concentration, the mean differences in birth weights (95% credible 

intervals (CI)) were 1 g (-20, 23) for phthalates, -11 g (-52, 34) for PFAS, 0.2 g (-9, 10) for PCBs, -4 g (-

30, 22) for PBDEs, and 7 g (-25, 40) for OCPs. Hence, exposure to these chemicals had null or small 

associations with birth weight.  
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→ Discussion 

There was some evidence that PFAS, DMP and Pb were associated with small reductions in birth 

weight. This may be explained by the fact that PFAS interact with estrogen receptors and disrupt 

hormonal balances [42]. Moreover, serum lipid levels are also altered by PFAS thereby potentially 

affecting fetal growth and development. PFAS may also affect adipose tissue development and the 

regulatory systems in body weight homeostasis, which may impact fetal growth outcomes [42]. 

3.8.3. KALLOO ET AL. 2020: EXPOSURE TO CHEMICAL MIXTURES DURING PREGNANCY AND NEONATAL OUTCOMES: THE 

HOME STUDY 

→ Objectives 

Three different methods were used to investigate the association between 43 environmental 

chemical biomarkers and neonatal outcomes [28]. 

→ Methods 

Data from the HOME study, a birth cohort in the USA, were used and 389 mothers who delivered a 

live born singleton infant were included. Outcomes of interest were birth weight, length, head 

circumference and gestational age. The broad class of chemicals included phenols, phthalates, 

metals, pesticides, PCBs, PBDEs, PFAS and cotinine measured in urine or blood samples. K-means 

clustering, principal components (PC), and one-chemical-at-a-time regression were used to 

investigate the associations.  

→ Results 

1) Using k-means clustering, three chemical mixture profiles were identified. Women in cluster 

1 had higher concentrations of most phenols, three phthalate metabolites, several metals, 

organophosphate/organochlorine pesticides, polychlorinated biphenyls, and several PFAS 

than women in clusters 2 and 3. On average, infants born to women in clusters 1 (−1.2 cm; 

95% CI: −1.9, −0.5) and 2 (−0.5 cm; 95% CI: −1.1, 0.1) had lower birth length than infants in 

cluster 3.  

2) Six PCs explained 50% of the variance in biomarker concentrations and biomarkers with 

similar chemical structures or from shared commercial/industrial settings loaded onto 

commons PCs. Birth length was weakly inversely associated with all PCs, except for PC 5. The 

largest difference in birth weight was observed for PC 1 and 6; each standard deviation 

increase in PC 1 (organochlorine pesticides, some phenols) and PC 6 (cadmium, bisphenol A) 

was associated with 0.2 cm (95% CI: −0.4, 0.0) and 0.1 cm (95% CI: −0.4, 0.1) lower birth 

length, respectively.  

3) Organochlorine compounds, parabens, and cadmium were inversely associated with birth 

length in the one-chemical-at-a-time analysis.  
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Cluster membership, PC scores, and individual chemicals were not associated with other birth 

outcomes. 

→ Discussion 

All three methods of characterizing multiple chemical exposures in this cohort identified inverse 

associations of select organochlorine compounds, phenols, and cadmium with birth length. Mixtures 

of environmental chemicals could affect infant birth length by disrupting mesenchymal stem cell 

differentiation and these are predecessors to bone, cartilage and fat cells. Consequently, a decrease 

in osteogenic proliferation may explain a smaller infant length at birth [28]. 

3.8.4. KIM ET AL. 2018: URINARY TRACE METALS INDIVIDUALLY AND IN MIXTURES IN ASSOCIATION WITH PRETERM BIRTH 

→ Objective 

The associations between 17 urinary trace metals individually and in mixtures in relation to preterm 

birth were investigated [15]. 

→ Methods 

Data from women of the LIFECODES birth cohort (USA) were used. 99 cases of preterm birth were 

selected, and 291 unmatched controls were also included. Outcome of interest was gestational age 

to determine preterm birth. 17 trace metals were analyzed in urine samples: arsenic, barium, 

beryllium, cadmium, copper, chromium, mercury, manganese, molybdenum, nickel, lead, selenium, 

tin, thallium, uranium, tungsten and zinc. 

because this study has the largest number of trace metal analytes to date to address this research 

question, two approaches were used to investigate the effect of mixtures. First elastic net (ENET) 

regularization was used to identify the individual metals and pairwise interactions from the mixture 

that are most strongly associated with preterm birth. Second, PCA was applied to examine 

associations with correlated grouping.  

→ Results 

1) ENET selected Cu as the most important trace metal associated with PTB.  

2) PCA identified 3 principal components (PCs). PC1 was characterized by high loading from 

primarily toxic metals, Cd, Mn, and Pb PC2 was characterized by high loading from essential 

metals, Cu, Se, and Zn. PC3 had high loading from metals that have previously been linked 

to seafood intake, As, Hg, and Sn. The PC for essential metals was associated with an 

increased risk of overall (OR 1.36, 95% CI 1.05, 1.76) and spontaneous (OR 1.58, 95% CI 1.14, 

2.20) preterm birth. 
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→ Discussion 

Maternal urinary copper in the third trimester was associated with increased risk of PTB, and 

statistical analyses for mixtures indicated that after accounting for correlation this metal was the 

most important statistical predictor of the outcome. 

3.8.5. PRESTON ET AL. 2020: PRENATAL EXPOSURE TO PER- AND POLYFLUOROALKYL SUBSTANCES AND MATERNAL AND 

NEONATAL THYROID FUNCTION IN THE PROJECT VIVA COHORT: A MIXTURES APPROACH 

→ Objectives 

The associations between exposure to multiple PFAS during early pregnancy with maternal and 

neonatal thyroid function were investigated [21].  

→ Methods 

Data from 726 mothers and 465 neonates from the Project Viva, a Boston area longitudinal pre-birth 

cohort were used. Six PFAS (PFOA, PFOS, PFNA, PFHxS, EtFOSAA, MeFOSAA) and thyroxine (T4), Free 

T4 Index (FT4I) and thyroid stimulating hormone (TSH) were measured in maternal plasma samples 

collected during early pregnancy and neonatal T4 in postpartum heel sticks.  

Individual and joint effects of PFAS exposure with thyroid hormone levels were estimated using 

weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) and 

evaluated potential non-linearity and interactions among PFAS using BKMR. 

→ Results 

1) Higher concentrations of the PFAS mixture were associated with significantly lower maternal 

FT4I, with MeFOSAA, EtFOSAA, PFOA, and PFHxS contributing most to the overall mixture 

effect in BKMR and WQS regression.  

2) In infants, higher concentrations of the PFAS mixture were associated with lower T4 levels, 

primarily in males, with PFHxS and MeFOSAA contributing most in WQS, and PFHxS 

contributing most in BKMR.  

3) The PFAS mixture was not associated with maternal T4 or TSH levels. 

→ Discussion 

In this relatively large cohort of pregnant women and their neonates, the PFAS mixture was inversely 

associated with maternal FT4I and neonatal T4 levels in male infants. BKMR and WQS regression 

identified PFOA, PFHxS, EtFOSAA, and MeFOSAA as contributing to the negative joint association of 

PFAS exposure with maternal FT4I. Conversely, WQS identified both PFHxS and MeFOSAA exposure 

in males as contributing to the negative joint association of PFAS exposure on neonatal T4 levels, 
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while BKMR only identified PFHxS as an important contributor to the suggestive negative association 

with T4 levels.  

The mechanisms by which PFAS alter thyroid function are unclear. Proposed mechanisms include 

reduced responsiveness to the hypothalamic-pituitary-thyroid axis, increased hepatic clearance of 

T4, increased conversion of T4 to T3 by type 1 deiodinase, and competitive binding to thyroid hormone 

binding proteins.  

3.8.6. KELLEY ET AL. 2019: EARLY PREGNANCY EXPOSURE TO ENDOCRINE DISRUPTING CHEMICAL MIXTURES ARE ASSOCIATED 

WITH INFLAMMATORY CHANGES IN MATERNAL AND NEONATAL CIRCULATION 

→ Objectives 

The association between mixtures of early pregnancy exposures and distinct changes in the maternal 

and neonatal inflammasome are investigated [29].  

→ Methods 

Data from 56 women of the Michigan Mother-Infant Pairs (MMIP) birth cohort, USA, were used. 

Those eligible for MMIP participation are between 18 and 42 years old and have a naturally 

conceived singleton pregnancy. Birth outcomes of interest were gestational age at delivery, mode of 

delivery infant sex, and birth weight. 41 exposure chemicals were quantified for each participant: 12 

phthalate metabolites, 12 phenol metabolites and 17 heavy metals were measured in urine samples. 

Additionally, inflammatory biomarkers were also measured. 

Spearman correlations and linear regression were used to relate individual exposures with 

inflammatory cytokines. Principal component analysis was used to assess the effect of weighted EDC 

mixtures on maternal and neonatal inflammation.  

→ Results 

1) First trimester measures of several individual EDCs, particularly metals and phthalates, were 

independently associated with maternal first trimester and term inflammatory markers 

using Spearman correlation coefficients. 

2) Ten of eleven PC groupings demonstrated statistically significant associations with 

inflammatory cytokines. For interpretation of these PCA results, the color heat map 

demonstrates the relative contribution of each EDC to a specific PC group (Figure 9). For 

instance, in PC1, metals and phthalates are positively weighted (red color), suggesting that 

higher metal and phthalate levels may be positively associated with first trimester IL-8 and 

IFN-γ. Using the same 11 PC variables, there were no significant associations between EDC 

mixtures with infant birth weight or gestational age at delivery. 
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Figure 9: Principal component loading coefficients.  
This color heat map shows the loading coefficients of the exposures for each of the principal 
components (PC), demonstrating the relative contribution of each EDC to a specific PC group. 
Exposures that have a higher positive weight are darker red, whereas exposures that are negatively 
weighted are blue.  

3.8.7. ZHANG ET AL. 2021: PARENTAL PRECONCEPTION EXPOSURE TO PHENOL AND PHTHALATE MIXTURES AND THE RISK OF 

PRETERM BIRTH 

→ Objective 

This study examined whether maternal and paternal preconception urinary concentrations of 

complex mixtures of phenols and phthalate metabolites interact to influence the risk of singleton 

preterm birth among couples attending a fertility clinic [30]. 

→ Methods 

384 female and 211 male (203 couples) participants seeking infertility treatment in the Environment 

and Reproductive Health (Earth) Study who gave birth to 384 singleton infants between 2005 and 

2018 were included. Men (18-55 years) and women (18-46 years) were eligible to participate either 
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independently or as a couple. Urinary concentrations of BPA, 3 parabens, and 11 phthalates were 

measured. Outcome of interest was gestational age. 

PCA was used to classify phenol and phthalate biomarkers into uncorrelated components based on 

their correlations. This method reduces the number of components while retaining information from 

the original variables. Factors with eigenvalues greater than one were identified as principal 

components. Next, BKMR was applied to separately examine maternal and paternal preconception 

phenol and phthalate mixtures in relation to preterm birth.  

→ Results 

1) PCA identified the same four factors for maternal and paternal preconception mixtures. Each 

unit increase in PCA scores of maternal (adjusted Risk Ratio (aRR): 1.36, 95%CI: 1.00, 1.84) 

and paternal (aRR: 1.47, 95%CI: 0.90, 2.42) preconception DEHP-BPA factor was positively 

associated with preterm birth.  

2) BKMR models further showed that maternal preconception BPA and mono(2-ethyl-5- 

hydroxyhexyl) phthalate, and paternal preconception mono(2-ethylhexyl) phthalate were 

positively associated with preterm birth when the remaining mixture components were held 

at their median concentrations. Couple-based BKMR models showed a similar relative 

contribution of paternal (PIP: 61%) and maternal (PIP: 77%) preconception mixtures on 

preterm birth.  

→ Discussion 

Maternal BPA and DEHP, and paternal DEHP exposure before conception were positively associated 

with preterm birth. The authors hypothesized that couples’ preconception exposure to phenols and 

phthalates may affect the male and female germline, probably as a result of epigenetic regulation 

during gametogenesis [43]. This may continue during embryogenesis, decidualization and/or 

placentation, thereby predisposing to adverse pregnancy and birth outcomes. Moreover, both BPA 

and DEHP have been shown to alter the epigenetic regulation of imprinted genes in gametes, 

potentially explaining the contribution of both parents to birth outcomes such as preterm birth [30]. 

Genomic imprinting, the monoallelic parent-of-origin-dependent expression of a subset of specific 

genes, is required for normal development, fetal growth, gestation length and metabolism among 

other functions [30]. Finally, the fact that DEHP and BPA are in the same factor suggests that both 

chemicals share exposure sources such as packaged food and beverages [44]. 

3.9. PRIME PROGRAM (USA) 

 
Given the complexity of mixtures and the effects of individual chemicals within the mixture, 

interactions among those chemicals, and the combined effect the mixture may have on human 

health., scientists need improved and innovative statistical methods to understand how exposure to 

real-world chemical mixtures may affect human health. The Powering Research through Innovative 
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Methods for mixtures in Epidemiology (PRIME) program created by NIEHS supports projects that 

develop innovative statistical methods that incorporate information into statistical models2. 

PRIME encourages team science. Experts in epidemiology, biostatistics, toxicology, data science, 

informatics, and related fields are working together to develop and compare novel approaches. he 

expected outcomes of PRIME include: 

• Improving quantitative methods to better understand the complex relationships between 

environmental exposures and health outcomes. 

• Stimulating new interdisciplinary methods for mixtures research in epidemiology. 

• Comparing existing and new approaches to identify the strengths and weaknesses across 

methods for various exposure and disease contexts. 

• Developing informatics tools and related software for broad implementation of methods. 

• Providing resources for the research community including publications, webinars, example 

datasets, and training. 

Publications from the PRIME program focus mostly on the development of novel statistical methods 

or expansion of existing methods such as BKMR or WQS that are deployed to investigate mixture 

effects. Hence, this research does not investigate mixture effects. Al full list op publications can be 

consulted on the website3. 

 

 

 

                                                           
2 https://www.niehs.nih.gov/research/supported/exposure/mixtures/prime_program/index.cfm 

3 https://www.niehs.nih.gov/research/supported/exposure/mixtures/prime_program/publications/index.cfm 
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 CONCLUSION 

As mentioned above, the exposome potentially consists of hundreds of exposures and mixtures may 

interact with each other leading to additive, synergistic and/or antagonistic effects. To date, most 

research on environmental determinants of disease has focused on single exposures. However, the 

traditional one-chemical-at-a-time strategy is not appropriate to represent exposure scenarios as 

humans are exposed to many chemical families at the same time [30]. 

Based on the available scientific literature summarized in the sections above, we can conclude that 

only a few publications investigated interactions and described correlation structures between 

chemical substances or chemical classes, the so-called co-occurrence patterns, including; Tamayo-

Uria et al. 2019 [10]. Rosofsky et al. 2017 [4], Govarts et al. 2020 [2], Ottenbros et al. 2021 [1], 

Robinson et al. 2015 [5], Kapraun et al. 2017 [23], Lee et al. 2017 [24], Reyes et al. 2018 [25], Neta et 

al. 2010 [12], Chung et al. 2018 [11] and Willey et al. 2021 [26]. Based on these publications, we can 

summarize a few key findings; 

- Most publications focus on commonly monitored substances or chemical groups in HBM 

datasets: e.g. metals, phthalates, pesticides, PCBs, phenols PFAS and BPDEs; 

- Mainly children or newborn and mother pairs are the subject of these mixture investigations; 

- Chemicals belonging to the same chemical group/family mainly tend to co-occur; 

- Co-occurrence across chemical families is in general weak/not present unless for chemicals 

occurring in or obtained from the same sources: e.g. PCBs & Hg in fish; phthalates & 

parabens; 

- Similar findings with respect to co-occurrence patterns are demonstrated across, these 

multiple studies; 

- A difference in co-occurrence patterns between age groups such as mothers and children is 

described [10]. 

- Chemicals within a family may likely cause similar effects, due to similar chemical structures 

and/or functionalities, and thus act according to dose-addition. Therefore, we recommend 

considering chemical groups as a basis for human health risk assessment.  

- It is important to be careful in the interpretation of lack of co-occurrence patterns. A lack of 

a co-occurrence pattern is not mutually exclusive, and it may be possible that chemicals are 

“randomly” co-occurring. A lack of co-occurrence can also be regarded as substances having 

independent distributions. 

The remainder of publications consider more than a couple of families of exposures simultaneously 

but focus hereby not in detail on the co-occurrence patterns but rather on the correlation between 

mixture effects in relation with health outcomes; e.g. birth outcomes such as birth weight, birth 

length or head circumference. Wider studies, including a broader range of measured exposures, 

multiple lifetime periods of exposure assessment and larger populations covering multiple regions 

are needed to more fully understand the complexity of human exposure [10].
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